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Abstract 

Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various 

complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by 

metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid 

oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in 

the diabetic heart, and may result from fatty acid-induced lipotoxicity and uncoupling of oxidative 

phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the 

loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in 

mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research 

which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in 

diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions 

can prevent and treat metabolic and mitochondrial dysfunction in diabetes. 

Keywords: diabetes, heart, lipotoxicity, mitochondria 

Abbreviations: 

Akt, protein kinase b; ANT, adenine nucleotide translocase; cGMP, cyclic guanosine monophosphate; CK, 

creatine kinase; CPT1, carnitine palmitoyltransferase 1; CR, caloric restriction; CS, citrate synthase; DAG, 

diacylglycerol; eNOS endothelial nitric oxide synthase; ETS, electron transfer system; FA, fatty acid; FAO, 

fatty acid oxidation; GLUT4, glucose transporter 4; HIIT, high intensity interval training; IRS-1, insulin 

receptor substrate 1; JNK, C-Jun-N-terminal kinase; MCD, malonyl-CoA decarboxylase; MCU, 

mitochondrial calcium uniporter; MICU1, mitochondrial calcium uptake protein 1; MIT, moderate 

intensity training; MVO2, myocardial oxygen consumption; NCLX, Na+/Ca2+ exchange; NF-κB, nuclear 

factor kappa-light-chain enhancer of activated B-cells; NLRP3, nucleotide-binding domain, leucine-rich–

containing family, pyrin domain–containing-3; NO, nitric oxide; OXPHOS, oxidative phosphorylation; PCr, 

phosphocreatine; PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1α; PKC, 

protein kinase C; PPAR, peroxisome proliferator-activated receptor; PVA, pressure-volume area; ROS, 

reactive oxygen species; SGLT, sodium-glucose cotransporter; Sirt, sirtuin; T2DM, Type 2 Diabetes 

Mellitus; TLR, toll-like receptor; UCP, uncoupling protein. 
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1. INTRODUCTION 

Type 2 diabetes mellitus (T2DM) has reached epidemic proportions; in 2014 around 422 million people 

had been diagnosed with T2DM, corresponding to about 8.5% of the global population of adults over 18 

years of age 1. Obesity is a major risk factor for the development of T2DM, leading to an increased risk 

of cardiovascular disease, particularly coronary artery disease and stroke. Diabetic cardiomyopathy was 

first described in 1972 2, and since then, large cohort studies, such as the Framingham study 3 and the 

Strong Heart Study 4 have reported left ventricular hypertrophy in patients with T2DM, independent of 

hypertension. More recently, diabetic cardiomyopathy was described as a restrictive phenotype with 

concentric LV remodelling and diastolic LV dysfunction. These two phenotypes are not considered to be 

successive stages of diabetic cardiomyopathy, but instead each evolves independently to, respectively, 

heart failure with preserved left ventricular ejection fraction (HFPEF) or reduced left ventricular ejection 

fraction (HFREF)5. 

Individuals with pre-diabetes and patients with uncomplicated T2DM often suffer from circulating 

hyperglycemia, hypertriglyceridemia and elevated plasma levels of non-esterified fatty acids (FAs). This 

increased FA availability leads to increased myocardial FA uptake and further reduces insulin-mediated 

glucose uptake, shifting cardiac ATP production almost exclusively towards FA oxidation (FAO) 6 both in 

early 7 and late diabetes 8,9. Mouse studies suggest that the altered substrate preference precedes the 

development of cardiac dysfunction 10, implicating altered cardiac metabolism in the development of 

diabetic cardiomyopathy. Moreover, despite this relative increase in FAO, the excess supply of FAs 

results in the accumulation of lipid intermediates, which in turn play a major role in the pathophysiology 

of diabetic cardiomyopathy. 

Here we initially consider these metabolic adaptations in the obese, insulin-resistant and ultimately type 

2 diabetic heart, focusing on the loss of metabolic flexibility. We subsequently review the lipotoxicity-

induced alterations in cellular and mitochondrial bioenergetic function of the diabetic heart. Finally, we 

explore how metabolic and mitochondrial alterations can be prevented by lifestyle and/or 

pharmacological intervention.  
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2. PATHOPHYSIOLOGY OF DISTURBANCES IN MITOCHONDRIAL METABOLISM IN 

T2DM 

2.1. Metabolic inflexibility and myocardial substrate utilization  

To maintain its high energy demand, the heart utilizes multiple energy-providing substrates, primarily 

triglycerides, non-esterified FAs, carbohydrates (glucose and lactate), and to some extent also ketone 

bodies and amino acids. The contribution of these individual substrates to ATP production depends on 

substrate availability, hormonal status and energy demand, and the capacity of the normal heart to 

switch between the different energy substrates is referred to as “metabolic flexibility”. With the 

development of insulin resistance, however, the metabolic flexibility of the heart (as well as skeletal 

muscle) deteriorates, such that myocardial energy production becomes primarily dependent on FAO. 

This concept is coined metabolic inflexibility or loss of metabolic flexibility11. In the 1960s, Sir Philip 

Randle performed landmark studies showing how products of increased FAO can inhibit glucose uptake 

in muscle 12. This mechanism, subsequently known as the Randle Cycle, underpins the "metabolic 

flexibility" of healthy individuals, i.e. the capacity to switch between fuels, depending on nutrient 

composition and intake, as well as variations in insulin signalling. Cardiac metabolic flexibility is also 

linked to daily fasting-feeding cycles and the cellular circadian rhythm, which coordinate a vital interplay 

between food intake and metabolism. Recent data from humans and animal models suggest that 

disturbances in feeding and the circadian rhythm, e.g. as a result of jet-lag or shift-work, could lead to 

the development of insulin resistance 13-16 (see also section 4.2). 

With the development of insulin resistance, however, the metabolic flexibility of the heart (as well as 

skeletal muscle) deteriorates, such that myocardial energy production becomes primarily dependent on 

FAO. The heart can use other substrates as metabolic fuel, such as branched-chain amino acids and 

ketone bodies, however the relative contribution of these substrates to total ATP production is relatively 

low, and little is currently understood about their importance in insulin resistance and T2DM. The high 

supply of FAs exceeds mitochondrial FAO capacity, resulting in the accumulation of intermediates of FA 

metabolism in the cardiomyocytes and causing a state of lipotoxicity 17. Lipotoxicity can lead to cellular 

oxidative stress, impaired cytosolic and mitochondrial calcium homeostasis and mitochondrial 

dysfunction.  
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Diabetic cardiomyopathy is therefore initially characterized by metabolic disturbances and diastolic 

dysfunction (left ventricular stiffness and impaired relaxation) 10,18,19. This condition can ultimately 

progress to cardiac hypertrophy and/or systolic dysfunction when lipotoxicity and/or local perfusion 

heterogeneities result in cell death and fibrosis 3,6,7,20.   

2.2. Increased myocardial oxygen consumption and impaired energetics 

Landmark studies in the 1970s 21 reported that canine myocardial oxygen consumption (MVO2) increased 

markedly in response to acute elevations in the plasma concentration of FAs. Increased FA utilization 

and increased MVO2 have also reported in obese women with insulin resistance 22. The cellular and 

molecular mechanisms behind these metabolic alterations are not clear, although it has been suggested 

that uncoupling of oxidative phosphorylation (OXPHOS) and induction of energy-wasting triglyceride-FA 

23,24 and Ca2+ cycling 25 could contribute to this elevation in MVO2. It was proposed that excess substrate 

supply might result in impaired transcriptional regulation of proteins constituting the pathways of 

cardiac energy metabolism 26. Indeed, in patients undergoing coronary artery bypass graft surgery, 

elevated plasma FA concentrations were associated with increased expression of cardiac mitochondrial 

uncoupling proteins (UCPs) 27. Moreover, an impaired cardiac energy reserve in patients with T2DM (as 

indicated by a lower myocardial phosphocreatine (PCr)/ATP ratio) correlated with fasting plasma FA 

concentration 28, a finding which could also be explained by increased uncoupling of OXPHOS. Cardiac 

PCr/ATP ratios have also been found to be reduced during catecholamine stress 29 or exercise 30 in people 

with obesity and insulin resistance, although another study failed to confirm this latter observation 6. 

Whether a lower myocardial PCr/ATP ratio in diabetic cardiomyopathy is a cause or effect of the 

progression to heart failure is currently unknown 31.  

2.3. Cardiac efficiency 

Cardiac efficiency is characterized by the relationship between the mechanical performance and energy  

consumption of the heart, whether measured as ATP utilization or oxygen consumption. Introduction of 

the conductance catheter allowed calculation of the total work performed by the heart during the 

cardiac cycle as pressure-volume area (PVA), and the relationship between MVO2 and PVA allowed 

calculation of the oxygen used for mechanical activity vs. oxygen consumption used for basal metabolism 
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and excitation-contraction coupling (unloaded MVO2) 32. Around the turn of the 21st century, Korvald et 

al. 33 showed, for the first time, that the MVO2-PVA relationship was significantly influenced by changes 

in myocardial substrate metabolism in pigs. Thus, a change in myocardial metabolism from glucose 

towards FAO shifted the in vivo MVO2-PVA relationship upward in a parallel manner, indicating 

decreased cardiac efficiency, which could be ascribed to a higher unloaded MVO2 (i.e. more oxygen used 

for basal metabolism and excitation-contraction coupling in the case of FAO). Similar observations were 

reported by How et al. 34 using isolated perfused working mouse hearts exposed to different workloads. 

Here, elevating FA concentration in the perfusion buffer shifted the MVO2-PVA relationship upward, 

resulting in a near 30% increase in unloaded oxygen cost (Figure 1).  

 

Fig. 1: Relationship between myocardial oxygen consumption (MVO2) and total cardiac work (measured 

as pressure volume area, PVA) in a mouse heart perfused with low (0.3 mmol/L, filled circles) and high 

(0.9 mmol/L, open circles) FA concentration. Extrapolation of the regression lines to zero work allows the 

myocardial oxygen cost to be separated in two independent parts: unloaded MVO2 (reflecting oxygen 

cost for excitation-contraction coupling and basal metabolism) and excess MVO2 (reflecting the amount 

of oxygen that is converted to mechanical work 34. 
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Finally, hearts from the diabetic db/db mouse show metabolic shifts towards a predominant FA 

utilization, and the MVO2-PVA relationships obtained from these hearts were also shifted upward 

relative to those of normal mouse hearts 35. These results therefore demonstrate that acute elevations 

in myocardial FAO, but also more chronic dependence on FA as oxidative fuel for the heart such as in 

T2DM, results in decreased cardiac efficiency. It should be noted that the FA-induced elevation in MVO2 

can by no means be explained by the switch in metabolism from glucose to FA, since the differences in 

phosphorylation–to-oxidation (P/O) ratios between FA and glucose oxidation (2.33 vs 2.58, respectively) 

could account for a maximum increase in oxygen consumption of 11%. Other mechanisms, e.g. 

uncoupling of oxidative phosphorylation and induction of futile cycles, as discussed in section 2.2 above, 

could explain the high MVO2 during predominant FA utilization. 

In conclusion, the healthy heart is characterized by a high metabolic flexibility, whereby metabolic supply 

and demand are optimally matched. The cardiac muscle from patients with insulin-resistance and 

diabetes cannot effectively switch from FA to glucose metabolism in the postprandial state and are 

therefore metabolically less flexible in adapting fuel preference to altered energy supply and demand. 

When relying primarily on FAO for energy production, the heart uses more oxygen for a given workload, 

compared with a heart oxidizing a mixture of FA and glucose. The FA-induced elevation in MVO2 is due 

to increased oxygen use for non-contractile processes, such as basal metabolism and excitation-

contraction coupling. 

2.4. Fatty acid metabolism and cellular lipotoxicity 

Lipid metabolism is a complex process, involving lipid intake, synthesis, transport and metabolism. FAs 

are major components of all lipid species, and thus the lipid content of plasma and tissues depends upon 

FA availability. FAs also influence multiple intracellular processes through mechanisms that include the 

activation of peroxisome proliferator-activated receptor (PPAR)α and PPAR gamma coactivator 1 α (PGC-

1α), leading to the upregulation of genes involved in FA metabolism and the biogenesis of peroxisomes 

and mitochondria. Reports have suggested that excessive FAs might augment inflammation through 

activation of toll-like receptor (TLR) signaling and following activation of nuclear factor kappa-light-chain 
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enhancer of activated B-cells (NF-κB) 36. There is increasing evidence that FA availability is an 

independent predictor of metabolic disorders including insulin resistance and T2DM 37-40. It appears 

likely that FA accumulation results in increased levels of FA intermediates, such as long-chain 

acylcarnitines, which underpin lipotoxic effects in heart mitochondria 41. Notably, however, in contrast 

to saturated long-chain FAs, polyunsaturated FAs at reasonable amounts are cardioprotective rather 

than detrimental to the heart and mitochondrial function 42.  

2.4.1. Fatty acid-induced uncoupling of oxidative phosphorylation  

It has been proposed that FA-induced mitochondrial uncoupling contributes to the higher MVO2 and 

impaired ATP synthesis capacity in the T2DM heart43. Indeed, the higher leak respiration and lower 

ADP/O ratio observed in mitochondria isolated from hearts of ob/ob mice suggest that mild 

mitochondrial uncoupling is one of the causes for the reduced OXPHOS capacity 43,44. Proton leak across 

the inner mitochondrial membrane, mediated by proteins such as the adenine nucleotide translocase 

(ANT) and UCPs have been proposed to increase the respiratory rate and decrease the proton 

electrochemical gradient. This would significantly affect the cellular metabolic rate in various cell types 

45, with consequent impairment of ATP synthesis. Cardiac UCP3 expression has been shown to be 

regulated primarily by PPARα, whilst cardiac UCP2 expression is regulated in part by a FA-dependent, 

PPARα-independent mechanism 46,47. Increased expression of UCP3 has been described in the hearts of 

animals with streptozotocin-induced diabetes 48. Other studies have demonstrated an association with 

UCP3 and enhanced myocardial FAO during insulin resistance diabetes and diabetes 49-51, and in humans 

increased concentrations of circulating free FAs correlate with expression of both UCP2 and UCP3 27. 

However, FA-induced leak respiration can occur without alterations in UCP3 protein content (e.g. as in 

ob/ob hearts 43,52). This suggests a role for other mechanisms that may also mediate proton leak, 

independent of uncoupling proteins. Notably, recent observations suggest that mitochondrial ADP/ATP 

carriers, also activated by FA 53, may be responsible for FA-induced increase in leak respiration.  

There does not seem to be a role for UCP3 as a mechanism to transport FA out of the mitochondria 

during elevated FA supply 54, as has been suggested previously 55. However, enhanced UCP3 expression 

has been associated with the mitigation of oxidative stress 56, and in line with this there is evidence to 

suggest a relationship between increased mitochondrial ROS and UCP3 deficiency 52,57,58. In intact cell 
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systems, mild mitochondrial uncoupling, due to a decrease in ∆Ψm, has been proposed to be a protective 

strategy under conditions of oxidative stress such as diabetes and obesity 50,59. However, this situation 

may only apply at the extremes of high redox potential, which is further elaborated within the R-ORB 

hypothesis (Redox-Optimized ROS Balance)60.  

The debate regarding the capacity of UCPs to uncouple mitochondria in the heart 53,61 and the extent to 

which UCP3 is involved in the prevention of ROS formation 60,62,63 remains unsettled. However, the 

correlation between UCP3 levels and FAO in the heart under obese/diabetic conditions does support a 

role for UCP3 under conditions of perturbed cardiac energy balance 64. In line with this, UCPs and the 

mechanistic basis of mitochondrial uncoupling in the obese and T2DM heart remains an area that 

requires further study. 

 

2.4.2. Long-chain acylcarnitine-induced lipotoxicity 

Several steps are needed to ensure long-chain FA transport into the mitochondria. The first step of long-

chain FA metabolism is the synthesis of long-chain acyl-CoA in the outer mitochondrial membrane 

catalysed by acyl-CoA synthase 65. Next, the synthesis of long-chain acylcarnitine is catalysed by carnitine 

palmitoyltransferase I (CPT1) to allow FA to cross the mitochondrial inner membrane 66. Long-chain FAO 

rate is therefore regulated by the cytosolic concentration of malonyl-CoA, which is an allosteric inhibitor 

of CPT1 67. Activation of insulin signaling stimulates malonyl-CoA synthesis and inhibits CPT1 68, providing 

an important mechanism for the regulation of FAO and adaptation of cardiac metabolism to substrate 

availability and nutritional state. 

The shift towards long-chain acylcarnitine accumulation is a result of unbalanced acylcarnitine synthesis 

and mitochondrial oxidation rates, which leads to accumulation of long-chain acylcarnitines in 

mitochondria – often referred to in the literature as incomplete FAO 69. In this case, the highest 

concentrations of long-chain acylcarnitines are found in the mitochondrial inner membrane and the 

intermembrane space 70, but long-chain acylcarnitines can also escape from mitochondria and inhibit 

the insulin signaling cascade upstream of protein kinase b (Akt) phosphorylation 71,72, favouring FA 

metabolism at the expense of glucose/pyruvate metabolism 73. Meanwhile, in cardiac mitochondria, 

Page 57 of 103 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

11 
 

long-chain acylcarnitines inhibit pyruvate and lactate metabolism even at physiological concentrations 

73. At elevated levels, the accumulation of long-chain acylcarnitines inhibits OXPHOS, inducing 

mitochondrial membrane hyperpolarization and stimulating ROS production 70,74. Thus, in patients with 

insulin resistance and T2DM, the high mitochondrial content of long-chain acylcarnitines could increase 

the risk of mitochondrial and cardiac damage, particularly in conditions of cardiac ischemia, whilst mild 

uncoupling of mitochondria might prove to be a useful strategy. Interestingly, the accumulation of long-

chain acylcarnitines per se and altered PI3K signalling likely have additional, less studied, consequences 

for cardiomyocyte function, namely electrophysiological alterations, predisposing the cardiomyocytes 

to cellular arrhythmias 75,76. This may help to explain why patients with T2DM also have an increased risk 

of life-threatening arrhythmias. Overall long-chain acylcarnitines are physiologically important 

substrates for energy metabolism during the fasted state, however, their accumulation in insulin-

resistant subjects might result in disturbances of energy metabolism and elevated risk of cardiac 

damage. 

2.4.3. Diacylglycerol- and ceramide-induced lipotoxicity 

Other lipid metabolism intermediates, namely diacylglycerols (DAG) and ceramides, have been shown 

to interact with the insulin signaling pathway (Figure 2) and their accumulation might lead to metabolic 

disturbances. The accumulation of DAGs increases protein kinase C (PKC)-θ and PKC-ε translocation in 

heart, following the reduction of Akt phosphorylation and decreased expression of mitochondrial fusion 

mediators 77. Ceramides inhibit Akt signaling via increased protein phosphatase 2 activity 78,79 and 

activation of atypical PKC-ζ 80,81. In addition, in isolated rat heart mitochondria, ceramides perturb 

mitochondrial membrane structure, inhibit mitochondrial complex I and III, and increase ROS production 

82-84.  

The relative contribution of these lipid intermediates to insulin resistance and altered mitochondrial 

function remains to be elucidated, and in particular it is not clear whether lipid intermediates accumulate 

in cardiac tissues at sufficient levels to induce insulin resistance and alter mitochondrial function. It was 

recently reported, however, that the diabetic heart exhibits a decreased mitochondrial capacity for β-

oxidation and increased accumulation of intracellular lipids, even in the absence of contractile failure 85. 

Depending on nutritional status and metabolic state, concentrations of lipid intermediates vary 

significantly. The DAG content in control animal hearts varies from 50 to 800 nmol/g 86,87.  Genetic 
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manipulation, diabetes, and chronic lipid overload might increase cardiac DAG content several fold 86-88, 

however when manipulating lipid content and signalling pathways by dietary, genetic or pharmacological 

means, it is not possible to influence the content of a single lipid intermediate in isolation of other 

upstream or downstream intermediates. This has lead to controversial observations in vitro in various 

animal and human studies 89. For example, myriocin, a pharmacological tool used to limit ceramide 

accumulation-induced insulin resistance, has been shown to alter energy balance, weight gain, and 

ectopic lipid accumulation in multiple models of obesity 90. Very recently however, it has been suggested 

that highly insulin-sensitive, endurance-trained athletes have elevated intramuscular lipid contents 

(triglycerides, DAG and ceramides) similar to those of insulin-resistant obese and T2DM subjects (known 

as the athlete’s paradox) 91. The mechanistic basis behind this observation is currently unknown, but 

likely relates to the intrinsically high mitochondrial function (and FA flux). 

2.5. Systemic inflammation and cardiac mitochondrial function in T2DM 

Systemic low-grade inflammation has been highlighted as a possible link between obesity, insulin 

resistance and metabolic disorders in T2DM. Secretion of pro-inflammatory cytokines from obese 

adipose tissue is thought to result in dysregulation of adipocyte metabolism with increased release of 

non-esterified FAs, which over time leads to ectopic fat deposition, including in the form of epicardial 

fat. The latter contributes to a local pro-inflammatory environment of adjacent cardiomyocytes 92 with 

a substantial increase in macrophage infiltration 93. The development of inflammation in T2DM has been 

extensively reviewed 94, and here we focus on the key concepts of how a low-grade systemic 

inflammation in T2DM affects mitochondrial metabolism.  

Circulating inflammatory markers, but also non-esterified FAs and high glucose, are known to activate 

TLRs on the myocardial cell membrane (particularly TLR2 and TLR4), increasing the transcriptional 

activity of NF-κB inside cardiomyocytes 95,96. In addition, C-Jun-N-terminal kinase (JNK) activity is higher 

in cardiomyocytes of patients with obesity or T2DM than in healthy individuals, and this is probably due 

to circulating pro-inflammatory cytokines such as tumor necrosis factor -𝛼 and interleukin-6 97. The 

subsequent NF-κB-and JNK-mediated inhibition of insulin receptor substrate 1 (IRS-1) and PI3K-Akt 

results in the removal of glucose transporter 4 (GLUT4) from the plasma membrane 98. This process 

exacerbates the inhibition of cardiac glucose uptake and contributes to enhanced FAO seen in T2DM 99. 
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Moreover, proinflammatory cytokines and caspases are produced intracellularly by the NF-κB and  JNK-

pathways. Together with long-chain saturated FAs (e.g. palmitate), ceramides, modified low-density 

lipoprotein, and glycemia (which are all elevated in T2DM), this can activate the cardiac NLRP3 

inflammasome 100, although it is uncertain whether FAs alone can also promote activation of the NLRP3 

inflammasome 101. By a currently unknown cellular process, likely involving additional factors such as 

transforming growth factor beta-1 (TGF-β1), the NLRP3 receptor binds to mitochondria, increasing ATP 

hydrolysis and ROS production 102. Meanwhile, mitochondria can also promote NLRP3 inflammasome 

activation through local ROS production, cytosolic mitophagy-induced mtDNA accumulation, and binding 

to cardiolipin 101. What the causes and consequences are of this mitochondrial binding is currently 

unknown.  
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Fig. 2. In T2DM, a high supply of fatty acids (FA) from adipose tissue and circulating lipoproteins lead to 

lipid overload and a state of lipotoxicity in the cardiomyocyte, characterized by accumulation of long-

chain acyl-CoA and acylcarnitines, as well as ceramides and DAGs. In turn, these substances inhibit insulin 

receptor phosphorylation and intracellular insulin signaling, with subsequent impairment of glucose 

uptake and oxidation. This effect is reinforced by circulating pro-inflammatory cytokines. A high FA 

uptake accelerates futile triglyceride-fatty acid cycling and mitochondrial uncoupling, reducing cardiac 

efficiency. Moreover, changes in (mitochondrial) membrane lipid composition and ROS production may 

contribute to supercomplex destabilization and disturbances in fission/fusion dynamics in T2DM. Altered 

cytosolic calcium handling causes changes in mitochondrial calcium concentration, modulating 

mitochondrial enzyme activities.  

Abbreviations: β-ox, β-oxidation; Akt, protein kinase b; CPT1, carnitine palmitoyl transferase 1; DAG, di-

acylglycerol; FATP1, fatty acid transport protein 1; Glut 4, glucose transporter 4; IRS, insulin receptor 

substrate; MCU, mitochondrial calcium uniporter; PDC, pyruvate dehydrogenase complex; PI3K, 

phosphatidyl inositol 3-kinase; PKC, protein kinase C; ROS, reactive oxygen species; TCA cycle, 

tricarboxylic acid cycle; UCP, uncoupling protein 

3. MITOCHONDRIAL STRUCTURE AND FUNCTION IN THE DIABETIC HEART  

Numerous studies have suggested that lipotoxicity affects mitochondrial respiration, however, the 

altered mitochondrial metabolism in the diabetic heart cannot fully be explained by the accumulation of 

lipids and FA intermediates per se, suggesting the influence of additional factors. A variety of changes in 

cardiac mitochondrial morphology, structure and function have also been observed in insulin resistance 

and T2DM. However, there are conflicting reports of changes to mitochondrial number/content in the 

diabetic heart and it remains unclear whether mitochondria have a smaller size or are more fragmented. 

Increased mitochondrial mass, area and number were observed in hearts from diabetic mice 44,103,104 

whereas no differences in mitochondrial content were found in ob/ob mice 105 or high fat diet-induced 

diabetic mice 19. Adding to the complexity, a lower mitochondrial content was seen in the hearts of 

fructose-fed rats with T2DM, but this was not associated with a loss in respiratory capacity per 

mitochondrial mass 106. Of note, however, even if T2DM is associated with a higher cardiac mitochondrial 
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density, this would not necessarily result in a higher OXPHOS capacity. In fact, a lower mitochondrial 

OXPHOS capacity is commonly seen in diabetes, e.g. in human atrial tissue from patients with T2DM 107 

and metabolic syndrome 108. In experimental mouse models of insulin resistance and diabetes, reduced 

cardiac function is frequently associated with lower maximal oxidative capacities compared with lean 

controls, using pyruvate, glutamate and FA substrates 19,44,52,109. The picture is not clear, however, and 

elevated FAO in the diabetic heart 105,110 has been associated with both increased 106 and decreased 

19,44,107 mitochondrial respiration in the presence of FA substrates.  

Using permeabilized cardiac fibers, Boudina and colleagues 44 found lower NADH-linked and 

palmitoylcarnitine-supported mitochondrial respiration in db/db mice. As such, the higher FAO 

measured in the isolated diabetic heart does not necessarily correspond to higher ex vivo mitochondrial 

respiration rates using FA substrates. In support of this, Wang et al 105 did not find increased maximal 

respiration with FAs in permeabilized cardiac fibers following high fat feeding of ob/ob mice.   

Activity of mitochondrial complexes I, II and IV have been reported to be low in patients with diabetes 

111 and in the hearts of insulin resistant mice 43,112. Although protein levels of mitochondrial complexes 

were reportedly unchanged in the db/db mouse heart, lower content of the α subunit of ATP synthase 

was associated with increased ROS production and oxidative stress 44. Transcriptional activity of PPARα 

and PGC-1α are reported to be upregulated in the diabetic heart, whereas, activity of pyruvate 

dehydrogenase is diminished 43,106,113. Spectrophotometric assessment of mitochondrial complex activity 

or analysis of protein levels do not provide a complete picture of mitochondrial function though, and 

instead this should ideally be assessed in functionally-intact respiring mitochondria. Moreover, in 

addition to enzymatic activities and transporter levels, OXPHOS is regulated by mitochondrial dynamics 

(fusion/fission) 114,115, cristae formation 116,117, and supercomplex organisation 118,119. Furthermore, a 

wide range of post-translational modifications of mitochondrial proteins contributes to the regulation of 

pathways responsible for mitochondrial ROS and redox conditions, as well as for substrate metabolism, 

where lysine acetylation has emerged as an important modulator of cardiac metabolism. In the diabetic 

myocardium enhanced acetylation of mitochondrial proteins has been reported to diminish complex I 

function and efficiency of ATP production 120,121, as well as NADH-linked respiration 122. Meanwhile, 

increasing evidence has highlighted how mitochondrial shape and cristae remodelling is influenced by 
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obesity and insulin resistance 123,124, which in turn regulate mitochondrial metabolism 125. Here, we 

discuss the recent advances in these fields, with a particular focus on insulin resistance and T2DM. 

3.1. Mitochondrial fission, fusion and biogenesis 

Recent studies have highlighted a key role for altered mitochondrial quality control in diabetic 

cardiomyopathy. Mitochondria undergo structural changes in architecture through the process of fusion 

and fission dynamics. Interruption of fusion/fission has been associated with impaired mitophagy, 

contributing to the development of cardiomyopathy 126. Therefore, altered mitochondrial dynamics 

negatively affects mitochondrial respiration and increases ROS generation, however this may in turn be 

a consequence of abrogated quality control within the mitochondrial network.  

Increased mitochondrial fragmentation and the downregulation of mitochondrial fusion proteins were 

found in atrial tissue from patients with T2DM 108. Correspondingly, in a mouse model of cardiac 

lipotoxicity more fragmented mitochondria were seen and this was attributed to enhanced 

mitochondrial fission (via DRP1) and reduced fusion 124. 

The observation that nutrient overload results in mitochondrial fission is of particular interest in the 

context of T2DM 115. Although fragmentation can occur under conditions of nutrient overload, it remains 

unclear whether this is due to diet-induced oxidative stress or to specific toxic effects of high glucose 

and/or FAs 124. Proteins controlling mitochondrial dynamics are clearly sensitive to ROS 127, and in line 

with this, altering the redox state through over-expression of superoxide dismutase and/or use of a 

superoxide dismutase mimetic reduced mitochondrial fragmentation 104,107,124.  

In cardiomyocytes, insulin can acutely regulate mitochondrial metabolism through a mechanism that 

depends on increased mitochondrial fusion via Opa-1 123. Opa-1, located in the mitochondrial inner-

membrane, is a main regulator of mitochondrial fusion and participates in cristae remodelling 117. Higher 

Opa-1 levels due to increased insulin signaling were associated with higher mitochondrial membrane 

potential, ATP production, and OXPHOS capacity 123, and may also contribute to the stabilization of 

mitochondrial supercomplexes 128,129 (see section 3.2). Thus, impaired insulin signaling may also directly 

contribute to mitochondrial structural remodelling in the heart. 

Adult cardiomyocytes have a regionally interconnected mitochondrial subnetwork that is thought to 

limit the cellular consequences of mitochondrial dysfunction by disconnecting damaged mitochondria 
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within seconds, essentially serving as a local power grid protection 130. It is conceivable that 

mitochondrial fragmentation (and the consequent lowering of mitochondrial membrane potential) may 

protect the remaining mitochondria from the damage of energy overload 115 or ROS 131. However, the 

role of mitochondrial dynamics in the diabetic heart remains to be fully explored, particularly the 

importance of dynamics in the regulation of ATP production and mitophagy.   

 

3.2. Mitochondrial supercomplex function in T2DM 

Assembly of mitochondrial protein complexes into supercomplexes is an important factor in optimizing 

OXPHOS function (Figure 3). However, the exact composition and functional role of the supercomplexes 

are still unclear 132-138. Preliminary evidence suggests that mitochondrial membrane lipid composition 

and peroxidation may influence supercomplex organization 139. In particular, cardiolipin is considered to 

be an important factor anchoring the supercomplex in the mitochondrial inner-membrane 140. 

Furthermore, cristae morphology may influence supercomplex formation and stability 128. Supercomplex 

formation can facilitate changes in OXPHOS capacity without necessarily altering the expression of 

individual protein complexes. Indeed, in the non-diabetic failing dog heart, Rosca et al. 141 reported a 

decrease in cardiac respiration rate, without any reduction in the enzymatic activity of individual 

mitochondrial complexes, whilst  formation of supercomplexes was lower and the number of isolated 

individual mitochondrial complexes increased 141. 

Limited data is available on supercomplex function and composition in the diabetic heart. In skeletal 

muscle fibres of overweight women with T2DM, a reduction in OXPHOS capacity was associated with a 

significant decrease in complex I-III-IV containing supercomplexes compared with controls 118. More 

recently, the same group reported lower OXPHOS capacity, lower supercomplex assembly and more 

oxidative damage to proteins in the atrial tissue of patients with T2DM and atrial fibrillation 119. 

Interestingly, a high-fat diet did not alter mitochondrial supercomplex formation in cardiac muscle of 

C57BL/6 mice, although remodelling of cardiolipin acyl chains was observed 142. In addition, dramatic 

loss of cardiolipin content and remodelling of acyl chains were observed in very early stages of 

streptozotocin-induced diabetes and in ob/ob mouse hearts 143. It has been proposed that lyso-

cardiolipin acyltransferase 1 (ALCAT1) is upregulated by oxidative stress and determines cardiolipin-
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remodelling by catalyzing the synthesis of cardiolipin species that are highly sensitive to oxidative 

damage 144. It should be noted, however, that although no significant changes in mitochondrial function 

have been reported after short-time (5 days) exposure to streptozotocin 143, the remodelling of 

cardiolipin could promote alterations in mitochondrial function by destabilizing supercomplexes during 

onset of diabetes. Interestingly, some impairment of cardiolipin synthesis may be tissue-specific and 

even have a protective effect.  In Tafazzin knockout mice, there was a decrease in the cardiolipin level in 

heart and skeletal muscle, but not in liver, where higher synthesis rates preserved the cardiolipin level 

145. As a result, hypermetabolism in liver protected these animals from high-fat diet-induced weight gain 

and glucose intolerance. 

Another mitochondrial supercomplex, known as the mitochondrial interactosome (Figure 3B), is 

comprised of the mitochondrial ATP synthase, ANT, inorganic phosphate carrier, the mitochondrial 

creatine kinase (mtCK) and voltage dependent anion channel (VDAC)146,147. In the oxidative muscle cells 

the diffusion of adenine nucleotides through the VDAC is impeded, but the movement of PCr and Cr 

through the channel is not restricted. In the intermembrane space the phosphoryl group is transferred 

from ATP to Cr by mtCK, while formed ADP is moved back to matrix via ANT. The mitochondrial 

interactosome supercomplex enhances the transfer of energy via the CK/PCr pathway from the site of 

production to the sites of utilisation, and increases effectiveness of ATP synthesis in mitochondria  148. 

The function of mitochondrial interactosome is altered in aging 149, but it is currently unknown whether 

changes in the interactosome contribute to the mitochondrial alterations observed in obesity and T2DM. 

The observation by Scheuermann-Freestone et al. that patients with diabetes have a significantly 

impaired PCr/ATP ratio may suggest a role for the mitochondrial interactosome in the pathophysiology 

of T2DM 28.  

The discovery of mitochondrial supercomplexes and the interactosome add complexity to our 

understanding of mitochondrial physiology. While the current hypothesis suggests that the dynamic 

assembly of supercomplexes contributes to increased efficiency of electron transport and lower ROS 

production, it remains unknown in the context of obese and/or diabetic heart. As supercomplexes were 

associated with skeletal muscle adaptation to exercise, and was shown to improve skeletal muscle 

strength in sedentary humans 150, there is also reason to believe that altered assembly of these 

complexes can  contribute to the progression of heart disease.  
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Fig.3. Mitochondrial electron transfer system – linear model (A) and assembly of supercomplexes 

(B). B left: supercomplex consisting of complex I-III-IV. B right: mitochondrial interactosome 

supercomplex consisting of ATP synthasome [comprising FoF1-ATPase, phosphate carrier (PIC), adenine 

nucleotide translocase (ANT)] and the mitochondrial creatine kinase (mtCK), voltage dependent anion 

channel (VDAC) and regulatory proteins (RP). 

3.3. Production of reactive oxygen species in obesity and T2DM 

The cellular redox environment ensures the balance between ROS production and the efficiency of ROS 

scavenging systems. When the balance is shifted towards more ROS production, and failure of the 

antioxidant systems to lower oxidative stress, cellular damage will occur. Approximately 90% of cellular 

ROS is produced in the mitochondria mainly from complexes I and III 114,151,152. Increased H2O2 resulting 

from superoxide (O2
-.) production at complex I has been observed in cardiac mitochondria from obese 

mice 44,153,154. During ADP-driven respiration (coupled OXPHOS), H2O2 production was found to be higher 

in atrial tissue from patients with T2DM 107, and in obese mice with T2DM 155, compared with non-

diabetic controls. In contrast, lower ROS production was reported in high-fat-high-sugar diet fed rats 110. 
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Whilst there are discrepancies in findings relating to ROS production, there are consistent observations 

of myocardial oxidative stress in obesity/insulin resistance 19,44,106,107,119,124 

Similarly, the up- or down-regulation of enzymatic antioxidant systems such as glutathione 

peroxidase, thioredoxin, catalase, and superoxide dismutase and the non-enzymatic antioxidant 

glutathione, have all been associated with altered mitochondrial energetics. Impaired thioredoxin-2 

signaling occurred in combination with lower mitochondrial capacity, increased ROS production and 

cardiac dysfunction in db/db mice 155 and in humans with T2DM 156. In contrast, the thioredoxin and 

catalase systems were upregulated in the hearts of other experimental obese/insulin resistance models 

110,157. It is possible that antioxidant upregulation is a compensatory mechanism to offset increased ROS 

production, however as the contribution of thioredoxin is greater when FAs are used as substrates, this 

additionally suggests a substrate-dependent effect 110. Glutathione is thought to be the major thiol 

antioxidant within cells, and lower levels of reduced glutathione or a lower reduced/oxidized glutathione 

ratio (GSH/GSSG) have been associated with mitochondrial dysfunction in humans 107, and in db/db mice 

and mice on a high-fat-high sucrose diet 153,155. Whilst supplementation of antioxidants in the context of 

heart disease has generally shown little benefit, recent evidence suggests that targeting mitochondrial 

ROS can improve energetics and maladaptation in the obese/insulin resistant heart (see section 4.4.2). 

Increased expression of mitochondrial catalase in response to high-fat diet was shown to prevent 

oxidative stress 157 and rescue diet-induced mitochondrial dysfunction 158. Furthermore, mitochondrial 

ROS scavenging was shown to improve cardiac insulin signaling and mitochondrial energetics 154. Perhaps 

focused studies to elucidate changes in redox buffering systems (i.e. thioredoxin and glutathione 

systems) in the heart associated with substrate availability and utilization could reveal origins of 

oxidative stress. Furthermore, post-translational mechanisms resulting from ROS over-production may 

also contribute to diminished redox buffering capacity in the obese and T2DM heart. 

3.4. Impaired mitochondrial calcium handling 

Mitochondrial oxidative phosphorylation is regulated by the Ca2+ concentration in the matrix. 

Accordingly, mitochondrial ATP production rate matches cardiac ATP utilization rate, independent of 

ADP feedback 159-161, by a process called excitation-energetics coupling 162. Mitochondrial Ca2+ uptake 

and extrusion occur with each excitation-contraction cycle, owing to the vicinity of mitochondria to the 
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sarcoplasmic reticulum (SR) and their interaction through well-coordinated processes 163. Ca2+ uptake is 

mediated via the mitochondrial Ca2+ uniporter (MCU) system and occurs primarily within specialized 

microdomains between the SR and the mitochondria, where local changes in the Ca2+ concentration 

trigger opening of the MCU 164. Mitochondrial Ca2+ efflux in the heart is slower than uptake, and is 

regulated primarily by the Na+/Ca2+ exchanger (NCLX)165.   

Ca2+ accumulation in the mitochondrial matrix, which occurs during increased heart rate 163, is a key 

trigger to increase the activity of 3 important regulatory enzymes of the TCA cycle, including pyruvate, 

α-ketoglutarate and iso-citrate dehydrogenase, all of which contribute to regenerate the redox state of 

the pyridine nucleotides (NADH/NAD+ and FADH2/FAD) and enhance antioxidant capacity 166. Activation 

of the pyruvate dehydrogenase complex (PDC) also stimulates glucose oxidation, which due to the higher 

P/O ratio of glucose, contributes to cardiac efficiency at higher workloads 167. In contrast, blunted 

mitochondrial Ca2+ uptake results in the oxidation of NADH/NAD+ and FADH2/FAD and hinders the supply 

of electrons for the ETS 86,168,169. As such, Ca2+ can directly modulate the activity of the entire oxidative 

phosphorylation cascade 159-161  

Elevated intracellular Na+ in the failing heart increases NCLX-mediated Ca2+ efflux 169, and may negatively 

affect the matching of energy demand and supply. Likewise, myocardial intracellular Na+ levels are 

aggravated in diabetes, due to upregulation of the sodium-glucose co-transporter 1 (SLC5A1) 170, thus 

driving mitochondrial Ca2+ efflux through the NCLX and reducing mitochondrial calcium levels. This can 

impede key steps in the TCA cycle and in turn limit the supply of electrons to the respiratory complexes 

and lead to a shortfall in ATP synthesis 171. In the db/db mouse heart a key component of the MCU 

(MICU1) was reported to be downregulated 172, whereas targeting mitochondrial Ca2+ uptake by 

overexpression of MICU1 rescued cardiac function, lowered mitochondrial ROS, improved the NADPH 

antioxidant system, and resulted in less apoptosis mediated by oxidative stress in these diabetic hearts. 

Mice with streptozotocin-induced diabetes also exhibited reduced mitochondrial Ca2+, and restoration 

of the Ca2+ concentration by MCU overexpression in this model resulted in increased PDC activity, a shift 

in metabolism towards glucose oxidation, and improved mitochondrial membrane potential and 

respiratory efficiency 173. Recently, mitochondrial Ca2+ handling in intact cardiomyocytes from ZSF1-

obese rats, a model for diabetic cardiomyopathy, was assessed 122. At similar extracellular Ca2+ and Na+ 
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concentrations, both cytosolic and mitochondrial Ca2+ concentrations were higher in isolated 

cardiomyocytes from diabetic animals, because of alterations in cytosolic Ca2+ handling and mild 

mitochondrial dysfunction. Furthermore, isolated mitochondria from these hearts were more prone to 

mitochondrial swelling 122, suggestive that the elevation in Ca2+ concentration made these mitochondria 

more prone to membrane permeability pore opening and apoptosis. 

Although the cause for the discrepancies in mitochondrial Ca2+ levels is not clear, we can speculate that 

differences in the severity of the disease model, multi-factorial progression of the disease, or technical 

discrepancies may be factors involved. Importantly, increased mitochondrial Ca2+ levels observed in 

cardiomyocytes from obese mice may reflect an early adaptation to the diabetic condition, whereas low 

levels of mitochondrial Ca2+ might occur as cardiomyopathy and cytosolic calcium alterations develop. 

Despite the importance of Ca2+ in modulating cardiac energy homeostasis and apoptosis, it is currently 

unclear if the SR/mitochondria interaction is altered in the diabetic heart, and whether alterations in 

mitochondrial calcium homeostasis directly influence cardiac metabolism or reflect an adaptation to 

altered energy metabolism in the T2D heart. 

4. LIFESTYLE AND PHARMACOLOGICAL INTERVENTIONS TO TARGET MITOCHONDRIAL 

METABOLISM IN THE DIABETIC HEART 

T2DM is primarily a lifestyle related disease that is progressive over time (Figure 4). Metabolic alterations 

in diabetic hearts are associated with lipotoxicity and changes in mitochondrial function. Two strategies 

might therefore be used to improve metabolism function in the diabetic heart, namely reduction of 

lipotoxicity and improvement of mitochondrial function. Alternatively altering the whole-body response 

to diabetes might indirectly improve cardiac metabolic function (Figure 4). The adoption of a healthy 

lifestyle or adoption of pharmacological interventions targeting lipotoxicity and/or mitochondrial 

function (Figure 5) are generally associated with improvements in cardiac function in T2DM. Some of 

these interventions are often also effective in reducing the age-related decline in cardiometabolic 

function in obesity and T2DM 105. Here, we focus on approaches which have a mechanistic basis involving 

modification of cardiac mitochondrial function or content.  
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Fig.4. Aging, overnutrition, sedentary lifestyle and imbalanced circadian rhythm are risk factors for the 

development of lipotoxicity, inflammation and associated ROS production and ion imbalance. The effect 

of these risk factors can be reduced by diet, exercise and/or pharmacological interventions, thereby 

improving insulin signaling and mitochondrial function with subsequent improvement of cardiometabolic 

function.    

 

4.1. Dietary interventions  

Several dietary interventions have led to improved health in patients or animal models with T2DM. 

Caloric restriction (CR) is one such intervention that has shown promising results, improving insulin 

sensitivity and reducing the risk of T2DM, in addition to enhancing lifespan in a wide range of animal 

models 174-179. Several studies have demonstrated that CR decreases the production of ROS and thereby 

limits oxidative damage in various tissues, including the heart 109,180,181.  This CR-induced reduction in 

ROS generation occurs without altering mitochondrial oxygen consumption in the heart 181. Since the 

lower ROS production following CR was detected in permeabilized fibres in the presence of pyruvate and 
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malate, but not with succinate and rotenone, the source of these ROS was suggested to be mitochondrial 

complex I 181. In the Otsuka Long-Evans Tokushima Fatty rat model for T2DM, CR lowered hemoglobin 

A1c, blood glucose, cholesterol, triglycerides and circulating FAs, and lowered UCP2 expression and 

mitochondrial ROS production in the heart and aorta 182. CR for six weeks improved the metabolic 

phenotype of rats on a high-fat diet, lowering obesity, insulin resistance, and left ventricular dysfunction, 

as well as cardiac mitochondrial ROS production, membrane depolarization, and swelling 183. Of note, 

these improvements were even more pronounced when exercise was combined with CR 183.  

Signaling targets known to be activated by CR (and inhibited by a high-fat diet) include sirtuins (Sirt) 1 

and 3 174. Sirt1 is located in the nucleus, while Sirt3 is located in the mitochondria. Both are involved in 

mitochondrial function and biogenesis and the regulation of oxidative stress 184-186. The deletion of Sirt1 

expression in the heart results in a phenotype similar to diabetic cardiomyopathy and includes 

mitochondrial dysfunction in association with acetylation of PGC-1α 187,188. Furthermore, drugs causing 

dual PPARα/ϒ activation have been shown to induce cardiac dysfunction due to Sirt1-PGC1α inhibition 

and decreased mitochondrial number189.  In the hearts of fructose-fed rats, Sirt1 activity decreased early 

in the progression to T2DM and was also associated with decreased in mitochondrial content and lower 

fatty acid oxidation capacity in the mitochondria 106. Recent evidence suggests that the cardioprotective 

effect of CR in the diabetic heart operates via Sirt1 and PGC-1α, increasing OXPHOS capacity and reducing 

cardiomyocyte oxidative stress and inflammation 190. CR was also associated with an increase in Sirt3 

activity in cardiac mitochondria 191, without changes in expression level 192. The change in Sirt3 activity 

might be mediated via changes in the NAD+/NADH ratio, which decreases as a result of over-nutrition 

associated with obesity and T2DM (causing Sirt3 inactivation), and is increased by CR (causing Sirt3 

activation) 193. Sirt3 deacetylates and activates many mitochondrial enzymes including respiratory 

complexes and pyruvate dehydrogenase 193. A study using a combined in vivo and in vitro approach 

showed that the mitochondrial dysfunction and increased ROS production associated with T2DM could 

be prevented by ALDH2 activation, acting on PGC-1α function through Sirt3-mediated deacetylation194.  

One further aspect of the metabolic syndrome and T2DM that might be targeted through dietary means 

is the link between nitric oxide (NO) bioavailability, tissue metabolism and cardiovascular health. In 

humans, polymorphisms in the gene encoding endothelial NO synthase (eNOS) give rise to insulin 
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resistance and T2DM 195,196, whilst patients with T2DM have lower myocardial eNOS protein expression 

than healthy controls 197, and a lower systemic capacity for NO synthesis198,199. Whilst the attenuated 

bioavailability of NO is commonly recognized to be a causative factor driving endothelial dysfunction, 

NO also mediates signaling effects at the cellular level through the activation of soluble guanylyl cyclase 

(sGC), increasing cyclic guanosine monophosphate (cGMP) levels and activating protein kinase G 

(PKG)200. The NO/cGMP/PKG pathway has been proposed as a possible therapeutic target in heart failure 

with preserved ejection fraction (HFpEF)200,201, and may hold promise in the specific case of diabetic 

cardiomyopathy. Of note, cGMP levels are lower in the hearts of both Zucker Diabetic Fatty rats202 and 

db/db mice203 in comparison with lean controls. In mice, eNOS deficiency results in a metabolic 

syndrome-like phenotype, including hypertension, weight gain, dyslipidemia and insulin resistance 

204,205, and in these mice the mitochondrial biogenesis response to CR is attenuated 206. Treatment with 

the phosphodiesterase 5 inhibitor tadalafil enhanced Sirt1-PGC1α signaling, thereby attenuating 

mitochondrial dysfunction in hearts of type 2 diabetic db/db mice207. More recently, restoration of the 

sGC-cGMP-PKG pathway was seen in the hearts of db/db mice following treatment with empaflagozin, 

in association with improvements in systolic and diastolic function, whilst inhibition of sGC using siRNA 

prevented these protective effects203. For more on empagliflozin see section 4.4.2. 

In addition to the endogenous route of NO synthesis 208, NO bioavailability can be increased by dietary 

supplementation with stable nitrogen oxides, e.g. nitrate (NO3
-) or nitrite (NO2

-) and their sequential 

reduction in vivo to NO 209. Dietary inorganic nitrate is principally acquired through the consumption of 

leafy, green vegetables and improves mitochondrial function and human health 210. Nitrate is reduced 

to nitrite via oral nitrate reductase in commensal bacteria 211. Nitrite is then converted to NO in the 

stomach by acid disproportionation 212, and is absorbed into the bloodstream. In eNOS deficient mice, 

dietary supplementation with inorganic nitrate elevated plasma and tissue levels of nitrogen oxides, and 

reversed features of the metabolic syndrome, lowering body weight, plasma triglycerides, visceral 

adiposity, fasting blood glucose, arterial blood pressure and hemoglobin A1c, whilst improving whole-

body insulin sensitivity 213. 

The link between nitrate supplementation, NO bioavailability and tissue insulin sensitivity may involve 

changes in the expression of genes involved in FAO and the control of tissue mitochondrial content. 
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Dietary nitrate increases plasma levels of cGMP in humans 214, and enhanced FAO capacity in rat skeletal 

muscle in a mechanism that depended upon PPARα activation by cGMP 215. Additionally, mitochondrial 

biogenesis occurred with higher doses of nitrate supplementation via the activation of PGC-1α 215. 

Similarly, nitrate supplementation increased FAO capacity in rodent hearts in a PPARα-dependent 

manner 216,217. Owing to its effects on mitochondrial FAO capacity, dietary nitrate supplementation might 

be beneficial in metabolic syndrome and T2DM both systemically and to the heart in particular. This may 

be the case even when the primary cause of the metabolic condition is not deficient expression/activity 

of eNOS, and this deserves further investigation in models of T2DM beyond the eNOS knockout mouse.  

While the mechanisms behind the beneficial effects of dietary modifications on T2DM are not fully 

understood, many of the reported explanations support the involvement of cardiac mitochondria. 

Protecting the heart against mitochondrial dysfunction and oxidative stress could potentially exert 

strong effects on the development of cardiovascular defects associated with T2DM and aging. 

4.2. Interplay between circadian rhythm and myocardial function 

Whilst food quantity and quality can impact on metabolic pathways and health in T2DM, the timing of 

food intake in relation to the circadian rhythm might also deserve consideration. In the heart 

approximately 6% of protein-encoding genes show a rhythmic expression throughout the day 218, whilst 

various measures of cardiac metabolism also show diurnal variations. For example, ex vivo experiments 

on rat heart demonstrated that oxidation of exogenous glucose showed significant diurnal variation, 

whilst no such variations were seen in the oxidation of exogenous oleate 219,220. Mice that have a 

misalignment between the internal clock and the external environment (i.e. housed under a day/night 

cycle of 20 h or 30 h instead of the normal 24 h cycle) showed altered daily patterns of energy 

expenditure and carbohydrate and fat oxidation, leading to longer QT intervals 221. The metabolic 

alterations were associated with a lower cardiac mitochondrial content 222. Furthermore, expression of 

Pgc1a, Mfn1 and Opa1 was downregulated in mice with disturbed circadian rhythms, suggesting that 

the molecular clock plays a role in the regulation of cardiac mitochondrial dynamics. Of note, cardiac 

mitochondrial respiratory function appeared to be more affected in the subsarcolemmal population of 

mitochondria, in comparison with the inter-myofibrillar population 223.  
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Time-restricted feeding has been shown to prevent and even cure diabetes in rodent models of T2DM 

(reviewed by 224) even without invoking CR 225. In nocturnal rodents, time-restricted feeding during the 

dark (i.e. active) period was associated with improved metabolic health, whilst time-restricted feeding 

during the light (i.e. inactive) period was associated with adverse metabolic outcomes 226. Rats on a time-

restricted feeding regimen have lower GSSG, protein carbonyl and malondialdehyde levels, all of which 

are indicative of substantial protection against cardiac oxidative damage in comparison with mice fed ad 

libitum 227. Data on the effects of time-restricted feeding on cardiac mitochondrial metabolism is 

somewhat scarce, but research on other tissues indicates that time-restricted feeding could impact on 

mitochondrial respiratory function. For example, livers of mice fed only during the active phase showed 

enhanced expression rhythms of mitochondrial encoding genes compared with ad libitum fed mice 228. 

The time-restricted feeding paradigm has been further studied in other model organisms. For example, 

fruit flies that were put on time-restricted feeding during their active phase showed improved cardiac 

physiology, as indicated by ex vivo heart period and arrhythmia index, together with altered cardiac gene 

expression, with circadian clock and electron transfer system (ETS) genes ranking as top clusters 229. The 

beneficial effects of time-restricted feeding on the heart are understood to be at least partly mediated 

by ATP-dependent chaperonin and mitochondrial ETS components 230. Nineteen different genes which 

encode the mitochondrial ETS were down-regulated by 10–20%, while 7 out of 8 components of an ATP-

dependent chaperonin were up-regulated in the hearts of rats on a time-restricted diet 230. 

Interestingly, the relationship between circadian rhythm and insulin signalling appears to be reciprocal, 

with several clock genes in cardiac tissue showing a phase shift in rats with a streptozotocin-induced 

diabetes 231. In the hearts of these diabetic rats, the daily rhythms of 7 molecular clock genes peaked 

about 3 hours earlier during a 24 h cycle (phase advance) compared with non-diabetic rats. 

4.3. Exercise training and cardiometabolic health  

Physical activity is associated with protection against cardiovascular disease 232, with development of the 

athletic heart characterized by normal or slightly enhanced diastolic function 233; however, the effects of 

exercise training on cardiac metabolism in humans remain somewhat unclear. In rodents, endurance 

training promotes angiogenesis 234 and decreases ROS generation 235,236 with no increase in fibrosis 237. 

Several studies have investigated the cardiometabolic effects of treadmill-running or swim-training in 
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rodents 238. It is commonly reported that training increases myocardial FAO capacity in rodents 239-244. 

Moreover, swim-training in mice increased cardiac citrate synthase (CS) activity (a putative marker of 

mitochondrial density 245) alongside increased PGC-1α expression 244. Of note, moderate intensity 

training (MIT) elicited different effects to high intensity interval training (HIIT) in mice when treadmill-

running at matched distances 246,247. Whilst both regimens increased skeletal muscle CS activity, only 

HIIT resulted in increased cardiac CS, alongside increased mitochondrial respiratory capacity and 

improved cardiac efficiency (work/O2 consumed) 246.  

The metabolic effects of endurance training are likely to benefit the obese/diabetic heart, through 

improvements in substrate metabolism, lipid handling, mitochondrial function and antioxidant capacity 

248. Indeed in mice with diet-induced obesity, both MIT and HIIT prevented concentric left ventricle 

remodelling and improved systolic and diastolic function, whilst lowering fibrosis and oxidative stress 19. 

Moreover, both exercise modalities were associated with changes in myocardial substrate utilisation 

with increased work-adjusted rates of glucose oxidation and decreased work-adjusted rates of palmitate 

oxidation in isolated, perfused hearts from diet-induced obese mice, suggesting a partial restoration in 

substrate balance towards that of non-obese mice 19. The authors further reported a normalisation of 

mitochondrial respiratory function in the diet-induced obese heart following HIIT, with increased 

OXPHOS capacity and improved efficiency (higher P/O ratios) in isolated cardiac mitochondria supplied 

with glutamate and malate as substrates for the N-Pathway via Complex I 19. Similarly, both in rats fed 

an obesogenic high-fat, high-sucrose diet for 12 weeks and controls on a non-obesogenic diet, HIIT 

enhanced mitochondrial oxygen consumption rates supported by palmitoylcarnitine and malate, 

suggesting enhanced FAO capacity following training 110. HIIT was also found to elicit cardioprotective 

effects in high-fat fed mice, with decreased infarct sizes following myocardial ischemia alongside lower 

work-independent oxygen consumption and lower ROS production in comparison with sedentary 

controls, suggesting at least a partial normalisation of mitochondrial function in these hearts 249.  

Studies in the overtly diabetic db/db mouse have also suggested beneficial effects of training on cardiac 

mitochondrial function. For instance, 15 weeks of endurance training lowered fibrosis and enhanced 

mitochondrial content in db/db mice (7 weeks of age at the start of the training protocol), with increased 

expression of a number of mtDNA-encoded genes 250. Mechanistically, this was attributed to exercise-

induced activation of Akt and PGC-1α signaling, which was otherwise inhibited in the diabetic heart 250. 
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Similarly, in a separate study 5 weeks of MIT on a treadmill lowered fibrosis and improved ATP levels in 

the hearts of db/db mice at 4 months of age, alongside improved oxygen consumption rates and 

improved contractile function in isolated cardiomyocytes 251. In addition to effects on mitochondrial 

content and respiratory capacity, exercise may also influence mitochondrial dynamics, with decreased 

expression of DRP1 relative to that of the mitochondrial fusion factor Mfn1 seen following exercise in 

db/db mice 251. The protective effects of exercise may be more limited in the older diabetic heart, 

however. In 8 month old db/db mice, three weeks of endurance training resulted in increased myocardial 

expression of PGC-1α alongside increased mtDNA density, but decreased ETS complex expression and 

increased mitochondrial fission, which the authors attributed to increased oxidative stress following 

exercise in older diabetic hearts 252.   

Beyond direct effects on the myocardium, endurance training is likely to have further beneficial 

effects for the metabolically-diseased heart. Skeletal muscle is the largest insulin-sensitive tissue in the 

body, and improvements in muscle mitochondrial function and FAO capacity via training may prevent 

accumulation of lipotoxic intermediates associated with insulin resistance improving whole-body 

glycemic control 253,254.  Moreover, weight loss is itself associated with improved myocardial energetics 

and diastolic function 255 and may result from a sustained increase in physical activity.  

 

4.4. Pharmacologic targeting of mitochondria in insulin resistance.  

4.4.1. Compounds to reduce lipotoxicity 

The accumulation of lipid intermediates advances myocardial insulin resistance, therefore targeting 

this lipid overload is a possible strategy to improve insulin sensitivity and mitochondrial function in the 

diabetic heart. Several treatment approaches have been trialled in animal models and clinical settings, 

however for various reasons, use of mitochondria-protective metabolic modulators against lipid 

overload is currently limited in clinical practice. The main targets for preventing accumulation of FAO 

intermediates are related to long-chain acylcarnitines (Figure 5). These include the pharmacological 

reduction of CPT1 activity by using direct or indirect inhibitors of CPT1 and the use of carnitine-lowering 

compounds. 
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Direct inhibitors of CPT1 (etomoxir, perhexiline, oxfenicine, teglicar) have been shown to decrease 

long-chain acylcarnitine concentration, inhibit FAO (at least partially), and increase glucose oxidation in 

heart 256-259. It has been shown that etomoxir and perhexiline improve cardiac function in patients with 

heart failure or cardiomyopathy 260-262. A fall in long-chain acylcarnitines following CPT1-inhibition 

improved insulin sensitivity in experimental models of insulin resistance 263,264, however, CPT1 inhibitors 

are not currently prescribed due to hepatotoxic and cardiotoxic effects 262,265 which may relate to 

unspecific side effects in mitochondria 266. An alternative approach is to increase the concentration of 

malonyl-CoA, an endogenous CPT1 inhibitor, using malonyl-CoA decarboxylase (MCD) inhibitors (e.g. 

CBM-301106, CBM-301940). MCD inhibition decreases long-chain acylcarnitines and FAO, thereby 

promoting glucose oxidation and improving insulin sensitivity 267-269. Studies in animal models have 

suggested that MCD is a possible drug target for the treatment of diabetic cardiomyopathy, however, 

further studies are necessary to prove the therapeutic efficacy of pharmacological inhibition of MCD. 

Treatment with inhibitors of carnitine biosynthesis and its transport into tissues (e.g. with the 

clinically prescribed drug meldonium (3-(2,2,2-trimethylhydraziniumyl) propionate) or experimental 

candidate methyl-GBB (4-[ethyl(dimethyl)ammonio]butanoate), is protective against cardiometabolic 

disease 70,270-276. These two compounds decrease long-chain acylcarnitine content in cardiac tissues and 

mitochondria and therefore prevent acylcarnitine-induced mitochondrial damage as well as impaired 

insulin signalling. Both compounds protect cardiac mitochondria against ischemia-reperfusion injury 

272,277,278, reduce infarct size in healthy and diabetic animals, and improve insulin sensitivity in 

experimental models of insulin resistance 70,273,279.  

Trimetazidine and ranolazine are clinically used as antianginal agents. Growing evidence suggests 

that trimetazidine treatment can reduce the severity of adverse cardiovascular events in both 

experimental models of insulin resistance and in patients with T2DM 280-282. It was first proposed that 

trimetazidine inhibits FA metabolism in cardiac mitochondria by inhibiting long-chain 3-ketoacyl CoA 

thiolase (the last enzyme in the β-oxidation pathway). More recently, however, it has been 

demonstrated that trimetazidine does not alter metabolic substrate oxidation in the cardiac 

mitochondria of T2DM patients 283,284. The antianginal effects of ranolazine are achieved by blocking the 

late sodium channels, thereby preventing a downstream rise in cytosolic Ca2+ concentrations285. In 
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addition, ranolazine may be useful in the management of stable ischemic heart disease with diabetes, 

as indicated by a fall in circulating hemoglobin A1c 286,287. 

4.4.2. Improving mitochondrial function 

Whilst the targeting of mitochondria is not a novel approach for the treatment of metabolic 

disorders or cardiovascular disease, studies of the efficacy of mitochondria-targeted compounds in the 

diabetic heart are somewhat limited (Figure 5). One such strategy might include treatment with 

mitochondrial-targeted antioxidants, such as MitoQ and MitoTEMPO. These compounds comprise a 

lipophilic cation (Tetraphenylphosphonium [TPP]) conjugated to an anti‐oxidant component.    

MitoQ treatment has been shown to decrease H2O2 formation and improve mitochondrial 

respiratory capacity in the heart following ischemia-reperfusion 288 and in pressure overload-induced 

heart failure 289. In experimental models of diabetes, MitoQ treatment reduced diabetic nephropathy by 

ameliorating mitophagy and the production of excess ROS290,291 and modulated oxidative stress in 

leucocytes isolated from T2DM patients292. The efficacy of MitoQ has not, however, been assessed in 

the diabetic heart.   

MitoTEMPO prevents mitochondrial permeability transition pore opening, necrosis and 

mitochondrial apoptosis after ATP depletion293,294. Treatment of hyperglycemic and/or hyperinsulinemic 

animals with MitoTEMPO improved cardiac function295-297. Moreover, enhanced mitochondrial 

antioxidant capacity following MitoTEMPO treatment improved insulin sensitivity and preserved 

cardiovascular function in animals with metabolic syndrome or diabetes, as well as in aged animals298-

300. Analysis of ROS-sensitive networks, particularly those associated with MitoTEMPO treatment, 

highlighted that increased mitochondrial ROS in the metabolically-diseased heart disrupts the normal 

coupling between cytosolic signals and nuclear gene programs underpinning mitochondrial respiratory 

function, antioxidant capacity, Ca2+ handling and action potential repolarization 301-304.  

Resveratrol, a natural polyphenol, is a multi-target compound and has been widely studied in the 

context of diabetes305. In addition to its anti-oxidant properties, treatment with resveratrol improves 

mitochondrial OXPHOS and biogenesis by activating Sirt1 and Sirt3 in experimental models of insulin 

resistance 187,306.  Although treatment with resveratrol has shown promising results in preclinical studies 
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307-309, no effect of resveratrol was observed on different markers of cardiovascular disease risk in aging 

and obese individuals 310. Recent studies have demonstrated that resveratrol supplementation improves 

skeletal muscle mitochondrial function, however it does not improve insulin sensitivity in people at risk 

of or with T2DM 311,312. Further studies aiming to understand resveratrol metabolism and 

pharmacokinetics, may therefore be required to realise the therapeutic potential of this approach. 

Elamipretide (SS-31) is a mitochondrial-targeted tetrapeptide that interacts with cardiolipin. It has 

been proposed that elamipretide stabilizes cardiolipin, thereby reducing ROS production and preserving 

ETS function under stressed conditions 313-315, and might improve supercomplex stability. Elamipretide 

improved calcium retention capacity in cardiac mitochondria, and reduced infarct size in the hearts of 

STZ-treated rats 316.  Moreover elamipretide improved mitochondrial organization and attenuated 

oxidative stress in a swine model of metabolic syndrome 317. 

One group of drugs that has received significant attention in recent years are inhibitors of the renal 

sodium-glucose cotransporter (SGLT2) 169. High-capacity, low-affinity SGLT2 are located in the renal 

proximal tubular epithelium and reabsorb filtered glucose. SGLT2 inhibitors lower blood sugar, and have 

been associated with loss of body weight in patients with T2D, attributable to the induction of a negative 

caloric balance 318. In addition, it is suggested that SGLT2 inhibition promotes production of ketone 

bodies, which can act as an efficient substrate for myocardial energy production319. One such compound, 

empagliflozin, has been shown to improve cardiac outcome and reduce mortality in diabetic patients 320-

322. The mechanism by which empagliflozin improves cardiac outcome is a matter of current debate, 

although improved cytosolic and mitochondrial Ca2+ and sodium homeostasis has been suggested to play 

a role 169. Cardioprotection in rats with metabolic syndrome following treatment with dapagliflozin, 

another SGLT2 inhibitor was associated with changes in fusion/fission proteins towards control values, 

as well as lower cellular ROS production 323.  
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Fig. 5. Pharmacologic targeting of mitochondria in insulin resistant heart. The main strategies are 

reduction/prevention of accumulation of long-chain (LC) acylcarnitines (direct and indirect inhibitors of 

CPT1) and targeting mitochondria functionality. Mitochondria targeting may include reduction of ROS 

(mitochondrial-targeted antioxidants), improving OXPHOS and biogenesis (resveratrol), stabilization of 

supercomplexes by preservation of membrane lipid composition (elamipretide), and improvement of 

cytosolic and mitochondrial Ca2+ homeostasis (SGLT2 inhibitors).  

 

5. CONCLUDING REMARKS 

The alterations in metabolism in insulin-resistant and T2DM hearts can be studied at various levels, 

from long-term treatment of cultured cells with high concentrations of glucose, through to studies of 

the whole heart or at the whole body level in diabetic animal or human subjects. Many of the findings 

discussed in this review were derived from human or animal studies, and arguably the pathophysiology 
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of diabetic cardiomyopathy is best understood by studying the interactions between various 

contributing factors in humans.  

Human studies are intrinsically limited, however, in part due to the practical difficulties and ethical 

implications associated with obtaining cardiac tissue from living patients, but also owing to uncertainties 

about the time course of the disease and the difficulty of inferring cause vs effect in observational 

studies. Moreover, most patients with T2DM are over 50 years old, and suffer from co-morbidities, such 

as obesity, hypertension, atherosclerosis or inactivity-related metabolic alterations. As such, studying 

T2DM in animal models has proven to be valuable for our understanding of the pathophysiology of 

diabetic cardiomyopathy. The choice of animal model varies depending on the specific research 

question, cost and ease-of-use (see 324 for an overview of animal models). The time course of disease 

and nature of the T2DM model (genetic, diet-induced or diet plus streptozotocin-induced) can influence 

the severity of metabolic and mitochondrial alterations, as well as the progression of cardiac dysfunction, 

and might explain discrepancies between findings across different studies. Co-morbidities are often 

overlooked in studies using rodents, complicating the translation of results to the human setting. Future 

work is therefore needed to understand the interplay between factors such as age, inactivity and cardiac 

mitochondrial dysfunction in T2DM. New animal models with a slower disease progression, such as the 

Nile rat 325-327, could play an important role in understanding the role of cardiac mitochondrial 

dysfunction in T2DM.  

Regardless of whether the altered mitochondrial metabolism observed in the diabetic heart is a 

cause or a consequence of myocardial insulin resistance, the mitochondria are central to the 

maintenance of cardiac metabolism and contractile function. Thus, targeting mitochondrial function to 

delay or reverse diabetic cardiomyopathy is an attractive, but underexplored avenue for future 

treatment options. Reducing mitochondrial lipotoxicity and oxidative stress seem effective in 

experimental animal models, but such strategies have not yet been translated to the clinic. On the other 

hand, the promising effects of treatment with the renal SGLT2 inhibitor empagliflozin may include a 

cardiac mitochondrial component 169. Likewise, nutritional interventions and physical exercise both have 

proven benefits for the contractile function of the heart, at least in part due to improved cardiac 
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mitochondrial function. However, to what extent these effects occur through improvements in whole-

body insulin sensitivity vs heart metabolic function in particular remain to be determined.  

 In conclusion, we have highlighted how T2DM alters glucose and FA oxidation and can lead to 

FA-induced lipotoxicity and mitochondrial dysfunction. The alterations observed in mitochondrial 

substrate utilization, bioenergetic function and fission/fusion indicate that mitochondrial function is 

significantly altered in T2DM. Future work needs to focus on the regulation of FA metabolism, the 

dynamic assembly/organization of the ETS complexes and the regulation of fusion/fission in obesity and 

diabetes, as well as the role of circulating inflammatory markers in response to physiological changes. 

Finally, the improvement of metabolic and mitochondrial function through lifestyle (nutrition and 

exercise) and pharmacological interventions could be an important strategy to improve cardiovascular 

performance in diabetes.  
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