197 research outputs found

    Investigation of the Dynamic Behaviour of H2 and D2 in a Kinetic Quantum Sieving System

    Get PDF
    Porous organic cages (POCs) are nanoporous materials composed of discrete molecular units that have uniformly distributed functional pores. The intrinsic porosity of these structures can be tuned accurately at the nanoscale by altering the size of the porous molecules, particularly to an optimal size of 3.6 Å, to harness the kinetic quantum sieving effect. Previous research on POCs for isotope separation has predominantly centered on differences in the quantities of adsorbed isotopes. However, nuclear quantum effects also contribute significantly to the dynamics of the sorption process, offering additional opportunities for separating H2 and D2 at practical operational temperatures. In this study, our investigations into H2 and D2 sorption on POC samples revealed a higher uptake of D2 compared to that of H2 under identical conditions. We employed quasi-elastic neutron scattering to study the diffusion processes of D2 and H2 in the POCs across various temperature and pressure ranges. Additionally, neutron Compton scattering was utilized to measure the values of the nuclear zero-point energy of individual isotopic species in D2 and H2. The results indicate that the diffusion coefficient of D2 is approximately one-sixth that of H2 in the POC due to the nuclear quantum effect. Furthermore, the results reveal that at 77 K, D2 has longer residence times compared to H2 when moving from pore to pore. Consequently, using the kinetic difference of H2 and D2 in a porous POC system enables hydrogen isotope separation using a temperature or pressure swing system at around liquid nitrogen temperatures

    Molecular structure refinement by direct fitting of atomic coordinates to experimental ESR spectra

    Full text link
    An attempt is made to bypass spectral analysis and fit internal coordinates of radicals directly to experimental liquid- and solid-state electron spin resonance (ESR) spectra. We take advantage of the recently introduced large-scale spin dynamics simulation algorithms and of the fact that the accuracy of quantum mechanical calculations of ESR parameters has improved to the point of quantitative correctness. Partial solutions are offered to the local minimum problem in spectral fitting and to the problem of spin interaction parameters (hyperfine couplings, chemical shifts, etc.) being very sensitive to distortions in molecular geometry.Comment: Submitted for publicatio

    Translational and rotational mobility of methanol-d(4) molecules in NaX and NaY zeolite cages: A deuteron NMR investigation

    Get PDF
    Nuclear magnetic resonance (NMR) provides means to investigate molecular dynamics at every state of matter. Features characteristic for the gas phase, liquid-like layers and immobilized methanol-d(4) molecules in NaX and NaY zeolites were observed in the temperature range from 300 K down to 20 K. The NMR spectra at low temperature are consistent with the model in which molecules are bonded at two positions: horizontal (methanol oxygen bonded to sodium cation) and vertical (hydrogen bonding of hydroxyl deuteron to zeolite framework oxygen). Narrow lines were observed at high temperature indicating an isotropic reorientation of a fraction of molecules. Deuteron spin-lattice relaxation gives evidence for the formation of trimers, based on observation of different relaxation rates for methyl and hydroxyl deuterons undergoing isotropic reorientation. Internal rotation of methyl groups and fixed positions of hydrogen bonded hydroxyl deuterons in methyl trimers provide relaxation rates observed experimentally. A change in the slope of the temperature dependence of both relaxation rates indicates a transition from the relaxation dominated by translational motion to prevailing contribution of reorientation. Trimers undergoing isotropic reorientation disintegrate and separate molecules become localized on adsorption centers at 166.7 K and 153.8 K for NaX and NaY, respectively, as indicated by extreme broadening of deuteron NMR spectra. Molecules at vertical position remain localized up to high temperatures. That indicates the dominating role of the hydrogen bonding. Mobility of single molecules was observed for lower loading (86 molecules/uc) in NaX. A direct transition from translation to localization was observed at 190 K. (C) 2012 Elsevier Inc. All rights reserved

    PLoS Genet

    Get PDF
    Tumourigenesis within the intestine is potently driven by deregulation of the Wnt pathway, a process epigenetically regulated by the chromatin remodelling factor Brg1. We aimed to investigate this interdependency in an in vivo setting and assess the viability of Brg1 as a potential therapeutic target. Using a range of transgenic approaches, we deleted Brg1 in the context of Wnt-activated murine small intestinal epithelium. Pan-epithelial loss of Brg1 using VillinCreERT2 and AhCreERT transgenes attenuated expression of Wnt target genes, including a subset of stem cell-specific genes and suppressed Wnt-driven tumourigenesis improving animal survival. A similar increase in survival was observed when Wnt activation and Brg1 loss were restricted to the Lgr5 expressing intestinal stem cell population. We propose a mechanism whereby Brg1 function is required for aberrant Wnt signalling and ultimately for the maintenance of the tumour initiating cell compartment, such that loss of Brg1 in an Apc-deficient context suppresses adenoma formation. Our results highlight potential therapeutic value of targeting Brg1 and serve as a proof of concept that targeting the cells of origin of cancer may be of therapeutic relevance

    Prenatal exposures and exposomics of asthma

    Get PDF
    This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi

    Learning a lesson from a famous puppet player Susumu Tange : A good practice of "Practical training of child-care skills" in Kyoto Women's college

    Get PDF
    textabstractCoronaviruses can cause respiratory and enteric disease in a wide variety of human and animal hosts. The 2003 outbreak of severe acute respiratory syndrome (SARS) first demonstrated the potentially lethal consequences of zoonotic coronavirus infections in humans. In 2012, a similar previously unknown coronavirus emerged, Middle East respiratory syndrome coronavirus (MERS-CoV), thus far causing over 650 laboratory-confirmed infections, with an unexplained steep rise in the number of cases being recorded over recent months. The human MERS fatality rate of∼30% is alarmingly high, even though many deaths were associated with underlying medical conditions. Registered therapeutics for the treatment of coronavirus infections are not available. Moreover, the pace of drug development and registration for human use is generally incompatible with strategies to combat emerging infectious diseases. Therefore, we have screened a library of 348 FDA-approved drugs for anti-MERS-CoV activity in cell culture. If such compounds proved sufficiently potent, their efficacy might be directly assessed in MERS patients. We identified four compounds (chloroquine, chlorpromazine, loperamide, and lopinavir) inhibiting MERS-CoV replication in the lowmicromolar range (50% effective concentrations [EC50s], 3 to 8 μM). Moreover, these compounds also inhibit the replication of SARS coronavirus and human coronavirus 229E. Although their protective activity (alone or in combination) remains to be assessed in animal models, our findings may offer a starting point for treatment of patients infected with zoonotic coronaviruses like MERS-CoV. Although they may not necessarily reduce viral replication to very low levels, a moderate viral load reduction may create a window during which to mount a protective immune response. Copyrigh
    corecore