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Abstract: This review examines the causal investigation of preclinical development of childhood 

asthma using exposomic tools. We examine the current state of knowledge regarding early-life 

exposure to non-biogenic indoor air pollution and the developmental modulation of the immune 

system. We examine how metabolomics technologies could aid not only in the biomarker 

identification of a particular asthma phenotype, but also the mechanisms underlying the 

immunopathologic process. Within such a framework, we propose alternate components of exposomic 

investigation of asthma in which, the exposome represents a reiterative investigative process of 

targeted biomarker identification, validation through computational systems biology and physical 

sampling of environmental media. 
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1. Introduction 

Childhood asthma represents a heterogeneous set of conditions, in which, functional lung 

impairment, chronic inflammation, tissue remodeling, and response to therapy represent some 

hallmark events. In spite of phenotypic differences, a number of international guidelines point to 

airway inflammation control as the primary goal of therapy [1]. Another key event of asthma features 

altered development of the cellular and molecular components of the immune system prior to the 

appearance of the asthmatic phenotype [2]. 
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1.1. Burden of childhood asthma 

Allergic asthma, allergic rhinitis, and eczema represent the most common childhood chronic 

diseases in the industrialized world [3] . Worldwide, the mean prevalence of asthma is estimated to 

range between 5 and 25% for 6–7 age group [4], reflecting plateauing of prevalence within many 

industrialized countries. Worldwide, the mean prevalence of asthma is estimated to range between 5 

and 25% for the 6–7 age group [4], reflecting plateauing of prevalence within many industrialized 

countries [4,5]. Within United States (US), an estimated 13 ±                                 1.7% of 

American Indian/Alaska Native         ±  0.2 % of White children suffer from asthma [6]. 

The economic toll of living with asthma is estimated at $37.2 billion for 2007 in the US alone[7]. 

An estimated 10.5 million school days were missed due to asthma between 2005–2009 [8]. 

Furthermore, the burden of asthma is disproportionately greater for low income and minority 

children[9]. 

 In spite of intensive on-going investigations on genetic [10], environmental [11], and 

lifestyle-related [9] risk factors, true causal processes remain unknown [12]. Known multiple classical 

allergens and adjuvants to date, including infiltrated ambient air pollutants, cockroach and cat dander, 

dust mites, mice allergens, and environmental tobacco smoke (ETS), do not adequately explain the 

burden of asthma in children [13,14]. Furthermore, current efforts have failed to stem the growing 

worldwide development of childhood asthma [15,16]. To date, early-life mechanisms underlying the 

childhood                   remain inadequately defined [15,16,17]. 

1.2. Aim and scope of this review 

Within this review, we examine the early-life exposure to emerging classes of environmental 

pollutants and their role in respiratory and immune system impairment. As pregnancy is often 

associated with longer daily hours spent within the indoor environment, the scope of this review is 

limited to environmental pollutants that pregnant women are exposed to within their residential indoor 

environment. Within this context, we also examine limited sunlight exposure and the resulting low 

level of vitamin D as a behavioral sequela of large daily hours spent within the indoor setting. 

Therefore, we focus here is the combined contributions of gestational vitamin D deficiency and indoor 

environmental pollutant exposures on pre-clinical immune functional impairments during the first few 

                ’      . Specifically, our goal is to assess the internal validity of exposomic approaches 

to clarify the mechanisms underlying developmental impairments of the immune system. Here we are 

concerned with the segment of the population which includes non-occupationally exposed pregnant 

women with a low risk of adverse birth outcomes. Thus, specific occupational exposures to physical or 

chemical respiratory risk factors lie beyond the scope of this analysis. Furthermore, classical risk 

factors, including specific genetic susceptibility contributors, viral, fungal and bacterial agents within 

the indoor environment, maternal nutritional qualities (such as low dietary intake of vitamin D), social- 

and/or economic- stresses, have already been examined in a number of other excellent 

reviews[11,18,19,20]. The risks of classical allergens and adjuvants will not be assessed within the 

present review.  

Based on the above considerations and within the context of asthma investigations, we assess the 

applicability and adaptability of the “ x                ”    a set of tools for a comprehensive 

exposure history characterization and as a health diagnostic tool for parents and infants. As previously 
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defined [21], the exposome is all exogenous factors (the environment) that can modify the endogenous 

host characteristics (genes and metabolic activities) that together influence health. The endogenous 

influences have been expanded to include the microbiome and the chimeric associations of pregnancy. 

For example, children with autism spectrum disorders (ASD) as well as maternal allergies, matenal 

psychological and socioeconomic difficulties, chemical, and biological (e.g. infection) stress during 

the pregnancy could contribute to increased risks of airway symptoms [22]. Interestingly, boys (6–8 

years of age) have more doctor-diagnosed asthma and ASD than girls [22].  

This review is composed of three sections. First, we lay the contextual framework of our 

discussion in terms of prenatal exposure to air pollution within a home indoor setting and its risks on 

asthma. Secondly, we examine the state of knowledge regarding exposure and outcome relationship. 

Thirdly, we propose novel components for exposomic investigation in light of the current gaps in 

knowledge regarding exposomic approaches as well as the future research direction for asthma 

biomarker validation. 

2. Methods 

A PubMed search was conducted using the search terms, asthma, immune, inflammation, 

oxidative stress, reactive oxygen species, lung, impairment, indoor, air pollution, prenatal, and 

childhood for peer-reviewed, primary research publications in the English language. 

3. Results and Discussion 

3.1.  Home: context of in utero exposures 

                       epidemiological evidence demonstrates that the indoor environment during 

early-life is critical to      occurrence of childhood asthma [11,23,24].                           

            report qualitative                                                                 

              redecoration are at significantly greater risks of asthma and allergies [13,24,25].  x       

                                                energy conservation efforts for                  

            x                   promote indoor moisture buildup [26]   Home indoor dampness is 

estimated to be present in > 70% of the homes in upstate New York [27] and in > 50% of the homes in 

Europe [28]. Both adults and children spend an estimated >                     hours within an indoor 

setting [29]. Within a vulnerable segment of the population (e.g. elderly, pregnant women, and young 

children), the exposure to indoor toxicants are estimated to be higher because of sedentary 

behavior[29]. However, while qualitative reporting of dampness is an established risk factor of asthma, 

home indoor dampness overall poorly correlate with directly measured fungi, mycotoxins, and other 

biogenic markers [30]. Furthermore, a growing body of investigations has failed to demonstrate an 

association between directly measured fungal components and asthma [14,24]. Recent reviews point out 

the critical need for the identification of specific                                                     

                        allergy investigation [11,25].  

The exact mechanism through which a damp environment increases the risk of asthma inception 

     other lower airway allergic diseases remains unknown [23,24]. Another emerging line of evidence 

suggests home indoor dampness is correlated with modern chemicals [31]. Within a non-occupational 

setting, both new and                                                                  PVC) has shown 
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to initiate or exacerbate asthma [32,33,34]. Sources such as PVC flooring or phthalate concentration in 

dust are significantly associated with a risk of asthma diagnosis [22,35]. Occupational exposure to 

painted surfaces have long been associated with eye irritation, skin itching, obstructive airway problems, 

and frequent urination in longitudinal follow-up studies [36,37,38,39,40,41]. 

However, exposure assessment of specific chemicals remains challenging. Data regarding 

temporal variability of the sources, emission, and human behaviors, and resulting human exposure 

remain scarce. The home indoor volatile organic compound (VOC)                                  

                                                           poor ventilation, humidity, and/or 

temperature va                       setting. 

3.1.1. Propylene glycol and glycol ethers, the forgotten endocrine disruptors 

A robust body of literature suggests that volatile organic compounds associated with cleaning 

tasks increases the risk of doctor-diagnosed asthma. Among the occupationally exposed adults, indoor 

sources such as cleaning spray, cleaning liquids, mechanical floor scrubbing, and window cleaning 

were significantly associated with risks of newly-onset asthma and other respiratory 

diseases[13,37,42,43,44,45]. Within a non-occupational setting, the children, whose homes had the 

highest 25% of propylene glycol and glycol ethers (PGEs) concentrations, had a 2.0-fold greater 

likelihood of having doctor-diagnosed asthma (95% CI, 0.9–4.4), a 4.2-fold greater likelihood of 

rhinitis (95% CI, 1.7–10.3), and a 2.5-fold greater likelihood of eczema (95% CI, 1.1–5.3) [46].  

PGEs are globally distributed as organic solvents and coalescents within cleaning agents, paints, 

pharmaceuticals, inks and consumer products (e.g., cosmetics, PVC, and glue) [40,47,48]. In various 

animal models, PGEs cause male sub-fertility and infertility, an increased time to pregnancy [49], 

oocyte depletion, spontaneous abortion, hematopoietic, immune (e.g., thymic) function suppression in 

adults, and transplacental fetotoxicities [48].  

3.1.2. Other volatile organic compounds of mistaken origin 

To date, a great deal of confusion exists regarding the true sources of common VOCs of indoor 

origin [50,51]. For example, 1-octen-3-ol and 1-butoxy-2-propanol are traditionally known as 

microbially emitted VOC [50]. However, recent work suggests that they are more likely to be emitted 

from PVCs at home, glues and other building structural material To date, a great deal of confusion 

exists regarding the true sources of common VOCs of indoor origin [50,51]. For example, 1-octen-3-ol 

and 1-butoxy-2-propanol are traditionally known as microbially emitted VOC [50]. However, recent 

work suggests that they are more likely to be emitted from PVCs at home, glues and other building 

structural material [36]. Furthermore, 2-ethyl-1-  x                               MVO        “     

                 ”          [52]. However, 2-ethyl-1-hexanol could also be produced as a 

by-product of di-2-ethylhexyl phthalate (DEHP) degradation [53]. 2-ethyl-1-hexanol from newly 

painted home indoor surfaces are significantly associated with asthma symptoms and airway 

inflammatory symptoms in a population-based survey of adults [52]. Another common plasticizer, 

2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TMPD-DIB, also known as TXIB) possesses adjuvant 

properties, including allergic airway inflammation, heightened production of IL-12, and oxidative 

stress in allergen sensitized mice [32]. 2,4-trimethyl-1,3-pentanediol monoisobutyrate (TMPD-MIB, 

also known as Texanols
TM

) is globally distributed coalescing agents in latex (i.e. water-based) paints, 
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print-ink, and PVC flooring material [54]. Non-occupational exposure to TXIB and Texanols
TM

 in the 

general population is a concern because they are detected in considerable concentrations in ambient air 

in the city of Los Angeles [54], newly painted and installed housing units [55,56,57], and in food 

packed in polystyrene and polypropylene cups [58]. Furthermore, both TXIB and Texanols
TM

 

represent some of the most common VOCs within the temporary housing units constructed by the US 

Federal Emergency Management Administration for the families displaced by Hurricane Katrina in 

2005 [56].  

3.1.3. Secondhand smoke exposure(SHS) 

SHS is a well-known risk factor for asthma [59]. Second-hand smoke (SHS) is composed of >      

                              mutagens/carcinogens, developmental toxicants, and irritants [60].          

 x                                                                           growth [61] and cognitive 

functioning during childhood [62], as well as exacerbation of childhood asthma and with allergic 

response [63]. Furthermore, SHS is a primary delivery mode of other VOCs, including benzene, 

toluene and styrene in the US population [64]. 

3.1.4. Vitamin D 

Higher confinement to indoor life (and associated deprivation from sunlight) can lead to vitamin 

D insufficiency with concomitant increases in exposure to indoor pollutants. A vitamin D deficiency is 

associated with chronic lung disease [65], which likely relates to less control of the inflammation and 

oxidative stress induced by the indoor air. Vitamin D insufficiency (serum level of 25(OH)D < 30 

ng/mL) is common among children in the United States [66,67]. Among children aged 6–11 years, 

vitamin D deficiency was approximately 62% in non-Hispanic whites, approximately 86% in 

Hispanics, and approximately 96% in non-Hispanic blacks [66]. Prior work has shown that Vitamin D 

deficiency leads to impaired Th1 and Th17 lymphocyte function [68]. Furthermore, it has also been 

associated with reduced activity of FoxP3 functions in Treg cells [68].              O             

          implicated in asthma due to its correlation with  x                 resultant tissue damage, and 

airway inflammation [69]. In addition, cytokine production of cord blood T cells is correlated with 

season [67,70]. Thus, season could influence the exposure to home indoor toxicants by promoting the 

family members to reduce the home ventilation rate, nutritional intake of food items rich in vitamins 

(e.g., spinach, kale, collards, soy beans, and rainbow trout), sunlight (thereby, vitamin D) or maternal 

infection, as well as the asthma outcome [67,70]. 

3.2. Childhood immune markers and asthma risks 

3.2.1. A definition of immune system impairment 

Developmental alterations during early life in the immune system is thought to underlie 

subsequent allergic diseases [71]. A hallmark of such pre-clinical events consists of preferential 

enhanced development of the CD4
+
 type-2 helper T cells (Th2) [72]. Within this review, we narrow the 

scope of altered immune system development as skewed T-cell differentiation, including Th1, Th2, 

Th17 and regulatory T (Treg) cells, and innate immune cells.  
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3.2.2. Biomarkers of immune system impairments 

Several indoor environmental exposures to modern chemicals (from building material, consumer 

product uses, and lifestyle) within a damp home indoor environment (contributed by structural water 

damage, poor ventilation, and/or low temperature) have been shown to contribute to altered 

development of fetal innate and adaptive immune cells [34,73,74,75,76]. A critical event in this 

process is the unbalanced development of Th1 and Th2 cells [72]. The Th2 phenotype naturally 

dominates during fetal development, but environmental pollutants are suggested to maintain or 

enhance this imbalance after birth. Accordingly, unclear events preceding Th1/Th2 imbalance and 

identification of high risk newborns represent key barriers to our understanding of this process [71]. 

An improved understanding of prenatal exposure to indoor synthetic pollutants and the risks on 

prolonging the Th1/Th2 cell imbalance represents the main challenge to aid interventions, which limit 

risks during pregnancy. 

 

Figure 1. Proposed conceptual model. 

A c                                                         M       -                     

                         indoor exposure to VOCs, other susceptibilities                 

                                                                                                    

          activate innate immune cells (e.g., NK cells, macrophages, neutrophils). Such multiple-hits 

promulgate inflammation and resultant oxidative stress, further skewing maternal T cells toward Th2 

development [77], while suppressing T regulatory (Treg) cells and the associated Foxp3 gene 

expression [78]. Suppression of maternal Treg                                                       

                                    cells as markers of pre-clinical, immunotoxic consequences in 

newborns. Here, we posit that Th2 cells, which release interleukin (IL)-4, IL-5, and IL-13 promote 
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asthma. Increased IL-4 production heightens the IgE level, which arms mast cells and basophils for 

their detrimental allergen-induced release of bronchoconstrictor mediators [79]. IL-5 increases the 

presence of eosinophils [79] and IL-13 increases bronchoconstriction. Therefore, environmental 

factors that cause a Th1-Th2 imbalance in the prenatal or early postnatal period, in particular, T-cell 

polarization toward Th2 reactivity, may contribute to the risk of allergic disease. Genetic associations 

have also connected asthma, inflammation, and atopy [80], which further supports our proposed 

analysis of the associations of environmental exposures, immune biomarkers, and asthma severity. 

3.3. Exposome 

There are three biosystems (maternal, fetal, and placental), which need to be considered for the 

exposomic investigation of prenatal effects. Each of these biosystems has an influence on the health of 

offspring for their lifetime after maternal exposure to environmental stressors. The placenta is grouped 

as a separate entity, because it is not a permanent organ of either the mother or offspring, it is an 

intertwined mix of maternal and fetal cells, and its physiological presence is vital for fetal existence. 

The lifetime consequences of developmental exposures modulate both the immunity [81,82] and behavior 

of offspring [83,84]. The exposomal composite [21,85,86] begins at conception, but the constant and 

consistent interplays of environment and genetics affect health throughout the lifetime. Developmental 

exposomics includes the analyses of all exogenous environmental (biological, chemical, and 

psychological/physical) stressors on these three biosystems and the resultant effects on endogenous 

cellular and molecular activities, which affect health. These include the     ’                      

repair, or further damage in response to the varying environmental influences [87]. The effects of 

prenatal exogenous stressors and the endogenous responses to the environmental modulators, which 

depend on the fetomaternal genotypes, determine whether a disorder/disease will occur with greater 

prevalence within the lifetime of the offspring. The exposome paradigm suggests that pollutants must 

be eval                                                          “           ”                  

environmental influences, including diet and life-style behaviors, which includes psychological and 

physical stress, and that the environmental influences are dependen                ’  genetics [88]. 

Consideration of potentiated effects are especially important for exposomic analysis since two 

different stressors may induce no detectable effect on separate pathways, but these pathways converge 

leading to a detrimental response [84]. 

As the fetus develops, the metabolomics [89] and proteomics of the mother, placenta (the 

interconnecting fetomaternal barrier) and fetus regulate the constituents for fetal growth and 

differentiation. At conception and later in gestational development, environmental stressors, including 

air pollutants, have been reported to affect the prevalence of asthma in the offspring [90,91]. It seems 

somewhat incongruous that an air pollutant, which affects the maternal lung could affect fetal 

development. However, some pollutants may directly permeate to the placenta and fetus and other 

pollutants may induce endogenous maternal cellular and molecular changes that transmit the lung 

exposure to the placenta and fetus [92,93,94]. It is especially interesting to note that mast cells in the 

lung interstitium and alveolar epithelium and in close proximity to the vascular and nervous system 

networks are implicated in asthma, because mast cells also play an important role in placenta 

development. The airways of asthmatic individuals have increased presence of mast cells, and mast 

cells have been suggested to enhance the asthmatic pathology [95,96,97]. Mast cell release of 

histamine and proteases occurs with ozone exacerbation of asthma [98,99,100,101,102]. Mast cells are 
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often considered to play a role in allergic asthma with regard to antigen-specific allergen triggering via 

IgE. However, mast cells and other innate immune cells can enhance asthma with pattern recognition 

receptor (PRR)-induced release of prostaglandins and other inflammatory factors due to exposure to 

pathogen-associated molecular patterns (PAMPs). The involvement of innate immune cells in asthma 

may be one reason why inhaled corticosteroids (ICS) sometimes have little effect, in that ICS have 

minimal influence on the number of mast cells in asthmatic lungs [103] and on 

bronchoconstriction[104].  

Air pollutants can modulate placenta structure and function [105,106,107,108,109], including 

immune activities associated with the placenta [110]; thus, it is not surprising [110]; that they either 

directly affect the placenta and fetus or rely on transited maternal cells and molecules. Hematopoietic 

mast cells have been suggested to play a role in implantation and placenta development [111,112], 

which affects offspring birth weight. Mast cell activity and other immune activities in the placenta 

affect placenta size, which can affect birth weight. Mast cells [113] and air pollutants [113] and air 

pollutants [114,115,116] also have been linked to preeclampsia. The placenta controls bidirectional 

trafficking of cells and molecules, and thus plays an intermediary role in the fetomaternal relationship. 

Asthma is a multifaceted inflammatory disease of the airways that usually includes increased 

mucus production, bronchorestriction, and airway remodeling. Whether asthma is classified as allergic 

or non-allergic immune cells producing similar cytokines and chemokines are implicated. Allergic 

asthma involves mainly adaptive lymphocytes including CD4
+
 Th2 cells producing IL-4, IL-5, and 

IL-13. IL-4 promotes B lymphocyte switching to the IgE antibody isotype, which arms mast cells and 

basophils with antigen-specific signaling. IL-5 promotes the growth and differentiation of eosinophils, 

and IL-13 promotes contraction of airway epithelial cells and smooth muscle cells. Non-allergic 

asthma involves innate lymphocytes of different classes referred to as innate lymphoid cells (ILC)1, 

ILC2 and ILC3 [117], which respond to PAMPs with their PPRs and produce IL-4, IL-5, IL-13 and 

IL-17.                                                 ’           ’                                

phenotype via epigenetic modulations as the naïve T cells are induced to proliferate. As the offspring 

gets exposed to the non-aseptic environment at birth further epigenetic modulation generally leads to a 

more balanced ratio of Th1 and Th2 cells; however, prenatal and postnatal environmental influences, 

including ozone, cigarette smoke, diesel exhaust and other airborne pollutants seem to enhance the 

continuation of the Th2 dominance [118]. With regard to allergic asthma the enhanced maintenance of 

the Th2 imbalance may be due to the phenotype of the antigen presenting cells (APCs). Alternatively, 

activated macrophages or M2 macrophages or dendritic cells preferentially activate Th2 cells. 

Ox                                                                             G            ’       

anti-oxidant) and APCs with less GSH preferentially activate Th2 cells [118,119,120]. Interestingly, 

GSH loss has been implicated in the induction of asthma due to numerous airborne metabolites 

exposures that can generate oxidative stress [121]. Prenatal exposure to acetaminophen also influences 

the risk of wheezing incidence at age 5 due to GSH variance [122]. Oxidative processes from prenatal 

exposures to cigarette smoke [123,124], polycyclic aromatic hydrocarbons [125], PCBs [126], 

phthalates [127], and bisphenol A [128] are likely due to aryl hydrocarbon receptor (AHR) 

activation[129], which promotes inflammation and asthma; these pollutants are known to activate 

AHR [129,130]. 

Allergic asthma is often of low or moderate severity with a relatively low level of airway 

remodeling although it is as chronic as the more severe form. Severe asthma with more recurrent 

exacerbations usually involves a greater extent of inflammation with a greater presence of neutrophils 
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and eosinophils. Severe asthm                     I  γ     I -17 from Th1 and Th17 cells or ILC2 

and ILC3 cells. The ILC2 and ILC3 subsets are lineage negative cells; whereas, the ILC1 subset 

includes NK cells. ILC2 and ILC3 cells are IL-7R positive; IL-7 is produced by hematopoetic stromal 

cells, and it supports early lymphoid progenitor differentiation of the stem cells. The ILC2 population 

is very similar to the Th2 population with regard to its cytokine profile; it develops in the presence of 

IL-25 and IL-33, and like Th2 cells, it expresses the GATA-3 transcription factor. IL-33 is a nuclear 

protein released by airway epithelial cells damaged by airborne pollutants; it is referred to as a 

damage-associated molecular pattern molecule (DAMP) or as an alarmin and is activated by cleavage 

with mast cell protease [131]. Th2 and ILC2 cells, mast cells, basophils and eosinophils are stimulated 

by IL-33. Another stimulator of ILC2 cells is thymic stromal lymphopoietin (TSLP) [132], which like 

IL-33 is released from airway epithelial cells and smooth muscle cells [133]. Damaged airway cells 

also release ATP [133]. Damaged airway cells also release ATP, which recruits and activates mast 

cells[134,135]; via ATP-induced activation of the inflammasome, cleaved active form of IL- β    

produced [136], which also recruits neutrophils and Th17 cells, and inflammation and airway 

remodeling is enhanced [137]. 

3.3.1. Utility 

Attraction and promise of Exposome-Wide Association Studies (EWAS) lie in distinguishing 

biomarkers of exposure from biomarkers of disease phenotype [88,138]. Recent blood-based 

exposomic analyses have shown their potential to capture multiple environmental factors, including 

the nutrients [139], viral infection [140], the microbiome [141], stress [142], and environmental 

toxins[143]. For example, preterm delivery as well as fetal growth restriction has been shown to be 

associated with urinary levels of acetate, tyrosine, formate, trimethylamine, lysine and glycoprotein [144]. 

Rappapport (2012) proposes a two-phase strategy for exposomic investigation of the disease 

outcomes. Within the first phase, molecules are scanned through an agnostic search tool for their 

association with the disease outcome status [138]. The second stage investigation is often directed to 

investigate the role of the metabolites (identified in the first phase) as causal contributors or 

intermediate players in pathophysiology of the clinical phenotypes [145]. The first phase of the 

analyses is often conducted through liquid-chromatography tandem mass spectrometry (LC-MS/MS) 

or nuclear magnetic resonance (NMR) spectroscopy [146]. Each has advantages and shortcomings. 

LC-MS offers the advantage of greater sensitivity of molecules in biofluids (e.g., ~4000 molecules 

within plasma sample) and better molecule discrimination [146]. On the other hand, NMR detect[146]. 

On the other hand, NMR detects relatively smaller set of particles (< 200). But, the NMR does not 

destruct the sample, thus permitting repeated analysis [146]. Furthermore, application of LC-MS/MS 

is also limited by the fact that existing libraries are too small to identify most of the detected 

molecules[147]. To date, interpretability of many metabolomics analyses remain extremely limited 

due to fragmentations or adduct formations [148]. To date, statistical methodology regarding pattern 

recognition remains the major challenge associated with metabolomics analysis. The challenge lies not 

only in the association of biomarkers with the disease outcome of interest, but also in clarifying the 

relevance of a given biomarker in a pathophysiological process [145]. Given the preliminary nature of 

small molecular biomarkers for phenotypic analyses, independent validations in order to account for 

the high-dimensionality of the analyses and the associated false discovery rates represent critical steps 

in identification of true disease outcome markers [138].  
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3.3.2. Urinary metabolomics 

Metabolomics captures a comprehensive catalogue of small molecules (molecular weight < 

1500 Daltons) within any organic systems or physiological state [149]. Urine metabolomic profiling 

holds promise as a non-invasive and unbiased wind          “              ”                        

status for newborns and children [145]. For example, within a murine model of asthma, administration 

of dexamethasone induced a marked, yet, reversible metabolism of carbohydrate, lipid, and sterol in 

bronchoalveolar lavage fluid from asthmatic lungs [149]. 

Within a clinical setting, the urinary metabolic profile of preterm and term infants were distinctly 

unique according to the gestational age at delivery [150]. In particular, preterm status was associated 

with altered patterns of: 1) tyrosine metabolism; 2) the biosynthesis process of tyrosine, tryptophan, 

and phenylalanine; 3) urea cycle; 4) arginine metabolism; and 5) proline metabolism [150]. Furthermore, 

co-morbid condition of extremely low weight as well as preterm delivery status was associated with 

altered arginine-proline metabolism, purine-pyrimidine metabolism, and urea cycle during 

adulthood[150]. In another pilot investigation of children with nephron-uropathies (renal dysplasia, 

vesico-ureteral reflux, urinary tract infection, or acute kidney injury) versus healthy children, the 

disease status was associated with an alteration in the urea cycle as well as purine and pyridine 

synthesis [150]. Metabolic profiling of asthmatic versus healthy control children using liquid 

chromatography—mass spectrometry (LC-MS) demonstrated lower levels of urocanic acid and 

methyl-imidazoleacetic acid in the asthmatic children compared to the controls [148]. Both urocanic 

acid and methyl-imidazoleacetic acid play a role in inflammatory responses. Overall, the number of 

studies for the identification of the biomarker using this technology remains extremely limited due to 

the limitations in analytical chemical techniques as well as the computational and bioinformatic 

tools[145]. 

3.3.3. Predictive value of metabolomic profile for asthma 

Undirected metabolomics refers to the comprehensive measurement of all small molecules within 

a given sample. Such data is subsequently cleaned into a small set of signals and qualitatively 

recognized through in silico searches of existing libraries or ionization experiments [151]. While this 

approach has [151]. While this approach has potential for the identification of novel biomarkers, a 

number of potential issues with such biomarkers have also been identified [145]. One of the critical 

issues relate to the erroneous identification of noise rather than a signal [145]. Even when a meaningful 

signal is detected, the biological relevance of the signal to underlying etiological process remains a 

challenge [145]. For example, Nuclear Magnetic Resonance (NMR) based metabolomic analysis 

applied to exhaled breath condensate demonstrated greater sensitivity to discriminate asthmatic 

children (86% sensitivity) compared to that based on exhaled nitric oxide and Forced expiratory 

volume (FEV1) with 81% sensitivity [152]. However, the exact molecular identity could not be 

determined based on the NMR technique [152]. Thus, the issues of biological plausibility, 

reproducibility of the identified set (through second stage analysis) as well as confounding need to be 

addressed [145]. To date, most investigations have been able to identify only the biomarkers of clinical 

outcome status (e.g. cardiac ischemia) [145]. Thus, the development of predictive metabolomics 

biomarkers of disease outcome is needed as diagnostic tool. 

In contrast, directed metabolomics refers to a more focused search of selected set of known and 
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expected metabolites using tandem mass spectrometry (MS/MS), or selected ion recording (SIR) with 

GC-MS [151]. Some investigators have used the targeted search as a validation tool for preliminarily 

identified set of metabolites [145]. 

3.3.4. Computational systems biology and its application to asthma 

Computational modelling includes an array of quantitative techniques that can be used to assess 

health risk. The computational modelling offers the advantage of interpreting preliminarily identified 

signal in the second stage of exposomic investigation. Furthermore, the computational models could 

account for the underlying uncertainties inherent within complex biological systems and their response 

to environmental exposure. The type of model depends on the nature of the system to be 

modelled[153]. Historically, the physiologically based pharmacokinetic [153]. Historically, the 

physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model has been routinely 

employed in toxicological studies [154].                               ’    x                       

to evaluate normal tissue limitations to chemical exposure (Figure 2). These models need information 

on the pollutants, including its absorption, distribution, metabolism, and elimination (ADME). In 

addition, information about the organ size, ventilation rates, the age, and the gender of the organism, 

 

Figure 2. Generic structure of the PBPK modelling framework.  

together with the hypothesized mechanistic information are required. PBPK modelling in early life has 

been used to determine toxicant exposure in children [155,156], however the focus has centered on drug 

metabolism and there is a paucity of models, which focus on environmental exposure and prenatal risk 

of developing asthma. In terms of prenatal exposures to toxicants, PBPK models have been used to 

quantify and characterize the physiological effects of drug exposure during pregnancy [157]. A 
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noteworthy development in PBPK modelling is the development human PBPK model toolkit by 

recoding published PBPK models [158]. This toolkit is expected to provide a straightforward reference 

point to a wide variety of models of this nature. The last decade and a half has also witnessed the 

growth of the systems biology paradigm as a framework for conducting toxicological 

investigations[159]. At the core of this new approach is computational systems biology [160]. The aim 

of computational systems biology is to use mathematics to describe complex biological phenomena in 

a quantitative manner using computer simulations (Figure 3). There is also an emphasis on using the 

models to study biological systems in a holistic manner as opposed the more reductionist approach that 

is often adopted in the wet-laboratory [161]. Several different mathematical approaches can be used 

when designing a computational systems model. These different mathematical approaches were 

recently reviewed in detail [162]. By far the most ubiquitously adopted mathematical approach is to 

use ordinary differential equations (ODEs). This method is similar in nature to PBPK models, in that, 

model reactions are informed by kinetic data and steady-state information about the biological system  

 

Figure 3. The steps involved in constructing a computational systems biology model. 

under investigation. A disadvantage of these models is that they cannot include variability or spatial 

dynamics as part of the behavior of the biological system. Another disadvantage is that kinetic 

information is often difficult to obtain, despite a number of archives for online kinetic data [163]. 

Parameterizing such models is also challenging especially as the size of model increases [164]. A 

pertinent example of how an ODE model can dovetail with wet-laboratory experimentation is recent 

work by Carbo et al. (2014) which was used to investigate the role of interleukin-21 (IL-21) in the 
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gastric mucosa during H. pylori infection [165]. Computational systems modelling has been used to 

model CD4
+
 T cell differentiation with in vivo mechanistic studies. The model predicted activated 

expression of T-        RORγ                                                             

potential role of IL-21 in the modulation of IL-10. This combined approach indicated that IL-21 

regulates Th1 and Th17 effector responses during chronic H. pylori infection in a STAT1- and 

STAT3-dependent manner, and are thus regulators of the H. pylori infection. Of significance for this 

review is that it suggests H. pylori colonization protects against childhood asthma [166,167]. 

Therefore, this study outlines a way in which the immune system can be studied mechanistically by 

using a combined in vivo in silico approach. Stochasticity in systems models can be dealt with by using 

stochastic differential equations which represent biological reactions as discrete random molecular 

collisions. Such models often represent scenarios involving low molecule numbers such as protein 

molecules from an expression of a single gene [168]. The major disadvantage of such models is that 

they are computationally slow. Variability can also be represented by using Bayesian networks. This 

type of modelling is useful for making toxicant risk estimates [169]. Petri nets can also be used to 

construct a systems model. These are a special type of model which comprises of two nodes, called 

places and transitions. Places and transitions are connected using arrows. Each place contains a 

number of tokens which is the same as a discrete number of biochemical molecules. A Petri net 

functions by input-                      ‘           ’                         ‘      ’                

represents a reaction taking place within a biological system [170]. There are a number of different 

standards for exchanging computational models, with the Systems Biology Markup Language (SBML) 

leading exchange format for the exchange of biological models at present [171]. This format is 

designed to be used for exchange independent of the modelling tool used to construct the model. 

Another more recent development from a purely toxicological perspective is the development of 

adverse outcomes (AOPs) [172]. AOPs are in essence are a way of having a mathematical 

representation which is informed by our current understanding of a biological pathway and how a 

change to that pathway could have an adverse outcome at the level of a whole organism or even 

population level [172]. Of note for this review is that this novel modelling methodology has been 

applied to studies which have investigated respiratory allergies [173]. The stages in building an AOP 

include determining the information required to represent the pathway of interest. A summary is then 

included in the form of a flow chart that depicts the AOP from molecular initiation even to its effect on 

the whole organism. The weight of the interaction is determined together with a confidence 

determination [174]. In light of developments such as those outlined in this section computational 

modelling will be applied further to both pre and post natal exposure to chemicals investigations. 

3.3.5. Is external validation necessary within exposome? 

In contrast to biomarker driven definition of exposome [138], the US National Research Council 

         x          “     x            x                                                              

receptor inward into the organism and outward to the general environment, including the 

         ”[175]. 

Within the context of asthma investigation, the more holistic definition proposed by the National 

Research Council is needed for the following reasons.  

First, since most metabolomics studies have been of pilot-scale, validation of the biomarkers both 

within- as well as between-persons remains exceedingly rare. Furthermore, underlying 
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representativeness of the diseased versus healthy controls remains relatively poorly understood. For 

example, age-dependent appearance of the asthma phenotype requires validation of initial 

identification. 

Second, temporal variability in external and internal exposures remains unknown [176]. At best, 

they are measured with substantial error [176]. Lack of valid and accurate exposure assessment data 

represents an important barrier to the understanding of true human exposure [11,13]. The nature of 

specific pollutants and the concentrations of presumed personal exposures remain unknown. In spite of 

these, predominant methodological approaches of asthma investigations rely on cross-sectional 

design[35,177,178,179]. Cross-sectional design is inherently limited in its ability to reject the 

possibility that risk factors (e.g. water-based cleaning) were adopted following the health outcome 

occurrence. In addition, most investigations rely on surrogate  x                                    

                                                                                        renovation, or 

flooding) rather than direct measurement [13,24,25]. 

4. Conclusion 

An improved understanding of the mechanistic processes underlying immune system 

impairments, early detection, and source removal are critical for prevention of asthma as a globally 

burdensome group of illnesses. This review considered damp home environments, emission and/or 

retention of VOCs from cleaning chemicals, latex paints, adhesives, rotting plasticizers, other aging 

furniture and structural material in homes as a context for exposure during early-life. We propose 

consideration of context of exposure within the application of targeted exposomic investigations. Such 

context holds promise for biomarker identification for asthma diagnosis, severity prediction, as well as 

clarification of pathophysiological processes. We propose an exposome as an integrated investigative 

approach in which comprehensive environmental media sampling, metabolomic profiling of 

biological samples, and second-stage investigation of biomarker relevance are considered together in 

an iterative process. 
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