126 research outputs found

    An Investigation into the Radial Velocity Variations of CoRoT-7

    Full text link
    CoRoT-7b, the first transiting ``superearth'' exoplanet, has a radius of 1.7 R_Earth and a mass of 4.8 M_Earth. Ground-based radial velocity measurements also detected an additional companion with a period of 3.7 days (CoRoT-7c) and a mass of 8.4 M_Earth. The mass of CoRoT-7b is a crucial parameter for planet structure models, but is difficult to determine because CoRoT-7 is a modestly active star and there is at least one additional companion. A Fourier analysis was performed on spectral data for CoRoT-7 taken with the HARPS spectrograph. These data include RV measurements, spectral line bisectors, the full width at half maximum of the cross-correlation function, and Ca II emission. The latter 3 quantities vary due to stellar activity and were used to assess the nature of the observed RV variations. An analysis of a sub-set of the RV measurements where multiple observations were made per night was also used to estimate the RV amplitude from CoRoT-7b that was less sensitive to activity variations. Our analysis indicates that the 0.85-d and 3.7-d RV signals of CoRoT-7b and CoRoT-7c are present in the spectral data with a high degree of statistical significance. We also find evidence for another significant RV signal at 9 days. An analysis of the activity indicator data reveals that this 9-d signal most likely does not arise from activity, but possibly from an additional companion. If due to a planetary companion the mass is m = 19.5 M_Earth, assuming co-planarity with CoRoT-7b. A dynamical study of the three planet system shows that it is stable over several hundred millions of years. Our analysis yields a RV amplitude of 5.04 +/- 1.09 m/s for CoRoT-7b which corresponds to a planet mass of m = 6.9 +/- 1.4 M_Earth. This increased mass would make the planet CoRoT-7b more Earth-like in its internal structure.Comment: 20 pages, 20 figure

    Limit-cycle behavior in one-zone convective models

    Full text link
    We present the results of a detailed set of one-zone models that account for the coupling between pulsation and convection following the original prescriptions of Stellingwerf (1986). Motivated by the arbitrary nature of the input parameters adopted in this theoretical framework, we computed several sequences of models that cover a substantial fraction of the parameter space and a longer integration time. We also included a turbulent pressure term and found that this physical mechanism plays a crucial role in the pulsation characteristics of the models by removing the sharp discontinuities along the light and the velocity curves showed by models that do not account for turbulent pressure. Finally, we investigated the vibrational and the pulsational stability of completely convective models. We consider as the most important finding of the present work the identification of a well-defined region in the parameter space where they approach limit-cycle stability. Several numerical experiments performed by adopting different values of the adiabatic exponent and of the shell thickness indicate that the coupling between pulsation and convection is the key driving mechanism for LPVs, a finding supported by recent theoretical predictions.Comment: 11 pages, 10 figures; accepted for publication in Astrophysical Journa

    New Variable Stars in Open Clusters I: Methods and Results for 20 Open Clusters

    Full text link
    We present high precision CCD photometry of 1791 objects in 20 open clusters with an age from 10 Myr to 1 Gyr. These observations were performed within the Delta a photometric system which is primarily used to detect chemically peculiar stars of the upper main sequence. Time bases range between 30 minutes and up to 60 days with data from several nights. We describe the way of time series analysis reaching a detection limit of down to 0.006 mag. In total, we have detected 35 variable objects from which four are not members of their corresponding clusters. The variables cover the entire Hertzsprung-Russell-diagram, hence they are interesting targets for follow-up observations.Comment: 4 pages, 2 figures, accepted by A&

    Low-Mass Eclipsing Binaries in the Initial Kepler Data Release

    Get PDF
    We identify 231 objects in the newly released Cycle 0 dataset from the Kepler Mission as double-eclipse, detached eclipsing binary systems with Teff < 5500 K and orbital periods shorter than ~32 days. We model each light curve using the JKTEBOP code with a genetic algorithm to obtain precise values for each system. We identify 95 new systems with both components below 1.0 M_sun and eclipses of at least 0.1 magnitudes, suitable for ground-based follow-up. Of these, 14 have periods less than 1.0 day, 52 have periods between 1.0 and 10.0 days, and 29 have periods greater than 10.0 days. This new sample of main-sequence, low-mass, double-eclipse, detached eclipsing binary candidates more than doubles the number of previously known systems, and extends the sample into the completely heretofore unexplored P > 10.0 day period regime. We find preliminary evidence from these systems that the radii of low-mass stars in binary systems decrease with period. This supports the theory that binary spin-up is the primary cause of inflated radii in low-mass binary systems, although a full analysis of each system with radial-velocity and multi-color light curves is needed to fully explore this hypothesis. As well, we present 7 new transiting planet candidates that do not appear among the recently released list of 706 candidates by the Kepler team, nor in the Kepler False Positive Catalog, along with several other new and interesting systems. We also present novel techniques for the identification, period analysis, and modeling of eclipsing binaries.Comment: 22 pages in emulateapj format. 9 figures, 4 tables, 2 appendices. Accepted to AJ. Includes a significant addition of new material since last arXiv submission and an updated method for estimating masses and radi

    HD 174884: a strongly eccentric, short-period early-type binary system discovered by CoRoT

    Get PDF
    Accurate photometric CoRoT space observations of a secondary seismological target, HD 174884, led to the discovery that this star is an astrophysically important double-lined eclipsing spectroscopic binary in an eccentric orbit (e of about 0.3), unusual for its short (3.65705d) orbital period. The high eccentricity, coupled with the orientation of the binary orbit in space, explains the very unusual observed light curve with strongly unequal primary and secondary eclipses having the depth ratio of 1-to-100 in the CoRoT 'seismo' passband. Without the high accuracy of the CoRoT photometry, the secondary eclipse, 1.5 mmag deep, would have gone unnoticed. A spectroscopic follow-up program provided 45 high dispersion spectra. The analysis of the CoRoT light curve was performed with an adapted version of PHOEBE that supports CoRoT passbands. The final solution was obtained by simultaneous fitting of the light and the radial velocity curves. Individual star spectra were derived by spectrum disentangling. The uncertainties of the fit were derived by bootstrap resampling and the solution uniqueness was tested by heuristic scanning. The results provide a consistent picture of the system composed of two late B stars. The Fourier analysis of the light curve fit residuals yields two components, with orbital frequency multiples and an amplitude of about 0.1 mmag, which are tentatively interpreted as tidally induced pulsations. An extensive comparison with theoretical models is carried out by means of the Levenberg-Marquardt minimization technique and the discrepancy between models and the derived parameters is discussed. The best fitting models yield a young system age of 125 million years which is consistent with the eccentric orbit and synchronous component rotation at periastron.Comment: 15 pages, 12 figures. Accepted for publication by A&

    In-the-Gap SU UMa-Type Dwarf Nova, Var73 Dra with a Supercycle of about 60 Days

    Full text link
    An intensive photometric-observation campaign of the recently discovered SU UMa-type dwarf nova, Var73 Dra was conducted from 2002 August to 2003 February. We caught three superoutbursts in 2002 October, December and 2003 February. The recurrence cycle of the superoutburst (supercycle) is indicated to be \sim60 d, the shortest among the values known so far in SU UMa stars and close to those of ER UMa stars. The superhump periods measured during the first two superoutbursts were 0.104885(93) d, and 0.10623(16) d, respectively. A 0.10424(3)-d periodicity was detected in quiescence. The change rate of the superhump period during the second superoutburst was 1.7×1031.7\times10^{-3}, which is an order of magnitude larger than the largest value ever known. Outburst activity has changed from a phase of frequent normal outbursts and infrequent superoutbursts in 2001 to a phase of infrequent normal outbursts and frequent superoutbursts in 2002. Our observations are negative to an idea that this star is an related object to ER UMa stars in terms of the duty cycle of the superoutburst and the recurrence cycle of the normal outburst. However, to trace the superhump evolution throughout a superoutburst, and from quiescence more effectively, may give a fruitful result on this matter.Comment: 9 pages, 8 figures, submitted to A&

    Nonlinear time-series analysis of Hyperion's lightcurves

    Get PDF
    Hyperion is a satellite of Saturn that was predicted to remain in a chaotic rotational state. This was confirmed to some extent by Voyager 2 and Cassini series of images and some ground-based photometric observations. The aim of this aticle is to explore conditions for potential observations to meet in order to estimate a maximal Lyapunov Exponent (mLE), which being positive is an indicator of chaos and allows to characterise it quantitatively. Lightcurves existing in literature as well as numerical simulations are examined using standard tools of theory of chaos. It is found that existing datasets are too short and undersampled to detect a positive mLE, although its presence is not rejected. Analysis of simulated lightcurves leads to an assertion that observations from one site should be performed over a year-long period to detect a positive mLE, if present, in a reliable way. Another approach would be to use 2---3 telescopes spread over the world to have observations distributed more uniformly. This may be achieved without disrupting other observational projects being conducted. The necessity of time-series to be stationary is highly stressed.Comment: 34 pages, 12 figures, 4 tables; v2 after referee report; matches the version accepted in Astrophysics and Space Scienc

    Detection of frequency spacings in the young O-type binary HD 46149 from CoRoT photometry

    Get PDF
    Using the CoRoT space based photometry of the O-type binary HD46149, stellar atmospheric effects related to rotation can be separated from pulsations, because they leave distinct signatures in the light curve. This offers the possibility of characterising and exploiting any pulsations seismologically. Combining high-quality space based photometry, multi-wavelength photometry, spectroscopy and constraints imposed by binarity and cluster membership, the detected pulsations in HD46149 are analyzed and compared with those for a grid of stellar evolutionary models in a proof-of-concept approach. We present evidence of solar-like oscillations in a massive O-type star, and show that the observed frequency range and spacings are compatible with theoretical predictions. Thus, we unlock and confirm the strong potential of this seismically unexplored region in the HR diagram.Comment: 11 pages, 12 figures, accepted for publication in A&

    CoRoT high-precision photometry of the B0.5 IV star HD 51756

    Get PDF
    OB stars are important constituents for the ecology of the Universe, and there are only a few studies on their pulsational properties detailed enough to provide important feedback on current evolutionary models. Our goal is to analyse and interpret the behaviour present in the CoRoT light curve of the B0.5 IV star HD 51756 observed during the second long run of the space mission, and to determine the fundamental stellar parameters from ground-based spectroscopy gathered with the CORALIE and HARPS instruments after checking for signs of variability and binarity, thus making a step further in mapping the top of the Beta Cep instability strip. We compare the newly obtained high-resolution spectra with synthetic spectra of late O-type and early B-type stars computed on a grid of stellar parameters. We match the results with evolutionary tracks to estimate stellar parameters. We use various time series analysis tools to explore the nature of the variations present in the light curve. Additional calculations are carried out based on distance and historical position measurements of the components to impose constraints on the binary orbit. We find that HD 51756 is a wide binary with both a slow (v sin i \approx 28 km s^-1) and a fast (v sin i \approx 170 km s^-1) early-B rotator whose atmospheric parameters are similar (T_eff \approx 30000 K and log g \approx 3.75). We are unable to detect pulsation in any of the components, and we interpret the harmonic structure in the frequency spectrum as sign of rotational modulation, which is compatible with the observed and deduced stellar parameters of both components. The non-detection of pulsation modes provides a feedback on the theoretical treatment, given that non-adiabatic computations applied to appropriate stellar models predict the excitation of both pressure and gravity modes for the fundamental parameters of this star.Comment: Accepted for publication in Astronomy and Astrophysics on 14/01/2011, 11 pages, 9 figures, 4 table

    Surprising dissimilarities in a newly formed pair of 'identical twin' stars

    Full text link
    The mass and chemical composition of a star are the primary determinants of its basic physical properties--radius, temperature, luminosity--and how those properties evolve with time. Thus, two stars born at the same time, from the same natal material, and with the same mass are 'identical twins,' and as such might be expected to possess identical physical attributes. We have discovered in the Orion Nebula a pair of stellar twins in a newborn binary star system. Each star in the binary has a mass of 0.41 +/- 0.01 solar masses, identical to within 2 percent. Here we report that these twin stars have surface temperatures that differ by ~300K (~10%), and luminosities that differ by ~50%, both at high confidence level. Preliminary results indicate that the stars' radii also differ, by 5-10%. These surprising dissimilarities suggest that one of the twins may have been delayed by several hundred thousand years in its formation relative to its sibling. Such a delay could only have been detected in a very young, definitively equal-mass binary system3 such as that reported here. Our findings reveal cosmic limits on the age synchronisation of young binary stars, often used as tests for the age calibrations of star-formation models.Comment: Published in Nature, 19 June 200
    corecore