58 research outputs found

    Particle acceleration by turbulent magnetohydro-dynamic reconnection

    Get PDF
    Test particles in a two dimensional, turbulent MHD simulation are found to undergo significant acceleration. The magnetic field configuration is a periodic sheet pinch which undergoes reconnection. The test particles are trapped in the reconnection region for times of order an Alfven transit time in the large electric fields that characterize the turbulent reconnection process at the relatively large magnetic Reynolds number used in the simulation. The maximum speed attained by these particles is consistent with an analytic estimate which depends on the reconnection electric field, the Alfven speed, and the ratio of Larmor period to the Alfven transit time

    Impulsive electron acceleration by Gravitational Waves

    Full text link
    We investigate the non-linear interaction of a strong Gravitational Wave with the plasma during the collapse of a massive magnetized star to form a black hole, or during the merging of neutron star binaries (central engine). We found that under certain conditions this coupling may result in an efficient energy space diffusion of particles. We suggest that the atmosphere created around the central engine is filled with 3-D magnetic neutral sheets (magnetic nulls). We demonstrate that the passage of strong pulses of Gravitational Waves through the magnetic neutral sheets accelerates electrons to very high energies. Superposition of many such short lived accelerators, embedded inside a turbulent plasma, may be the source for the observed impulsive short lived bursts. We conclude that in several astrophysical events, gravitational pulses may accelerate the tail of the ambient plasma to very high energies and become the driver for many types of astrophysical bursts.Comment: 13 pages, 8 figures, accepted to The Astrophysical Journa

    Fourier Acceleration of Langevin Molecular Dynamics

    Full text link
    Fourier acceleration has been successfully applied to the simulation of lattice field theories for more than a decade. In this paper, we extend the method to the dynamics of discrete particles moving in continuum. Although our method is based on a mapping of the particles' dynamics to a regular grid so that discrete Fourier transforms may be taken, it should be emphasized that the introduction of the grid is a purely algorithmic device and that no smoothing, coarse-graining or mean-field approximations are made. The method thus can be applied to the equations of motion of molecular dynamics (MD), or its Langevin or Brownian variants. For example, in Langevin MD simulations our acceleration technique permits a straightforward spectral decomposition of forces so that the long-wavelength modes are integrated with a longer time step, thereby reducing the time required to reach equilibrium or to decorrelate the system in equilibrium. Speedup factors of up to 30 are observed relative to pure (unaccelerated) Langevin MD. As with acceleration of critical lattice models, even further gains relative to the unaccelerated method are expected for larger systems. Preliminary results for Fourier-accelerated molecular dynamics are presented in order to illustrate the basic concepts. Possible extensions of the method and further lines of research are discussed.Comment: 11 pages, two illustrations included using graphic

    A multicentre case control study on complicated coeliac disease: two different patterns of natural history, two different prognoses.

    Get PDF
    Abstract Background: Coeliac disease is a common enteropathy characterized by an increased mortality mainly due to its complications. The natural history of complicated coeliac disease is characterised by two different types of course: patients with a new diagnosis of coeliac disease that do not improve despite a strict gluten-free diet (type A cases) and previously diagnosed coeliac patients that initially improved on a gluten-free diet but then relapsed despite a strict diet (type B cases). Our aim was to study the prognosis and survival of A and B cases. Methods: Clinical and laboratory data from coeliac patients who later developed complications (A and B cases) and sex- and age-matched coeliac patients who normally responded to a gluten-free diet (controls) were collected among 11 Italian centres. Results: 87 cases and 136 controls were enrolled. Complications tended to occur rapidly after the diagnosis of coeliac disease and cumulative survival dropped in the first months after diagnosis of complicated coeliac disease. Thirty-seven cases died (30/59 in group A, 7/28 in group B). Type B cases presented an increased survival rate compared to A cases. Conclusions: Complicated coeliac disease is an extremely serious condition with a high mortality and a short survival. Survival depends on the type of natural history. Keyword: Celiac disease, Complications, EATL, Prognosis, Glutens, Gluten-free die

    Electron Surfing Acceleration in Magnetic Reconnection

    Full text link
    We discuss that energetic electrons are generated near the X-type magnetic reconnection region due to a surfing acceleration mechanism. In a thin plasma sheet, the polarization electric fields pointing towards the neutral sheet are induced around the boundary between the lobe and plasma sheet in association with the Hall electric current. By using a particle-in-cell simulation, we demonstrate that the polarization electric fields are strongly enhanced in an externally driven reconnection system, and some electrons can be trapped by the electrostatic potential well of the polarization field. During the trapping phase, the electrons can gain their energies from the convection/inductive reconnection electric fields. We discuss that relativistic electrons with MeV energies are quickly generated in and around the X-type neutral region by utilizing the surfing acceleration

    Understanding coronal heating and solar wind acceleration: Case for in situ near‐Sun measurements

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94903/1/rog1641.pd

    Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics

    Get PDF
    We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) ows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several special applications in heliophysics and astrophysics, assessing triumphs, challenges,and future directions
    • 

    corecore