
,

t

Approved forpublic release;
distribution is unlimited.

Title

Author@)

Submitted to.

Development of a Common Data
Model for Scientific Simulations

John Ambrosiano, Los Alamos National Laboratory
David M. Butler, Limit Point Systems, Inc.
Celeste Matarazzo, Lawrence Livermore National Laboratory
Mark Miller, Lawrence Livermore National Laboratory
Larry Schoof, Sandia National Laboratory

1 1 th International Conference
on Scientific and Statistical
Database Management
Cleveland, OH
July 28-30, 1999

Los Alamos
N AT I 0 N A L LAB 0 R A T 0 RY
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the US. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for US.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (1 0/96)

DISCLAIMER

This report was prepared as an account of work spomred by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, e x p m or implied, or assumes any legal liabii-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessan'ly constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Common Data Model Development Ambrosiano, et a1

Development of a Common Data Model for Scientific Simulations

John Ambrosiano, Los Alamos National Laboratory
David M. Butler, Limit Point Systems, Inc.

Celeste Matarazzo, Mark Miller, Lawrence Livermore National Laboratory
Larry SchooJ Sandia National Laboratory

Abstract

The problem of sharing data among scientific simulation models is a difficult
and persistent one. Computational scientists employ an enormous variety of
discrete approximations in modeling physical processes on computers. Problems
occur when models based on different representations are required to exchange
data with one another, or with some other software package. Within the DOE’S
Accelerated Strategic Computing Initiative (ASCI), a cross-disciplinary group
called the Data Models and Formats (DMF) group, has been working to develop a
common data model. The current model is comprised of several layers of
increasing semantic complexity. One of these layers is an abstract model based on
set theory and topology called the fiber bundle kernel (FBK). This layer provides
the flexibility needed to describe a wide range of mesh-approximated functions as
well as other entities. This paper briefly describes the ASCI common data model,
its mathematical basis, and ASCI prototype development. These prototypes
include an object-oriented data management library developed at Los Alamos
called the Common Data Model Library or CDMlib, the Vector Bundle API from
the Lawrence Livermore Laboratory, and the DMF API from Sandia National
Laboratory.

1. Introduction

Computational scientists employ an enormous variety of discrete approximations in

modeling physical processes on computers. Within a given model, discrete

representations and numerical algorithms are chosen to achieve the greatest fidelity and

computational efficiency.

The range of computational representations in simulation is extremely broad. Some

simulation variables are finite and discrete, while others are approximations of functions

on continuous spaces. In the latter case, continuous problem domains must be first

discretized. Discretization often takes the form of a grid of sample points or alternatively

a decomposition into cells or elements. However, other representations may also be

1

Common Data Model Development Ambrosiano, et a1

employed. These may include representations such as spectral or pseudospectral

expansions, e.g. Fourier or wavelet transforms.

Serious problems can occur when models based on different representations are

required to exchange data, or when input and output data related to simulations must be

interpreted by other applications. For example, initial problem geometry and grid might

be generated using commercial CAD and grid generation software. This information must

then be communicated to the simulation code. A similar problem may occur in

transferring simulation output to commercial visualization or statistical analysis software.

Data exchange problems can also arise when individual sub-models are incorporated into

larger, collaborative, multi-discipline frameworks. The trend toward building large-scale,

high-performance, multi-discipline problem-solving environments (PSEs) has promoted

data exchange problems to near-crisis levels.

Examples of ambitious, multi-discipline PSEs are to be found in the Environmental

Protection Agency’s emerging framework for integrated air and water quality models

[Novak, et al, 19981 as well as within the Department of Energy’s Accelerated Strategic

Computing Initiative (ASCI) [Larzelere, 19981. The aim of the EPA framework is to

enable more realistic simulations of coupled ecosystems. The goal of the ASCI program

is to support science-based stewardship of the nation’s nuclear stockpile under conditions

of a comprehensive nuclear test ban.

The essential problem of sharing simulation data can be stated as follows.

Simulations are intended to be models of physical reality that mimic some essential

features of the real system so as to predict aspects of its behavior. Data sharing can be

challenging for many reasons, but two very important ones are:

2

Common Data Model Development Ambrosiano, et a1

The complexity of a real system is many times greater than that of a computer

program. Real systems are often infinite and continuous, whereas a computer

simulation is finite and discrete.

The real system is at least two levels of abstraction removed from the computer

program. The first level being the step from reality to a mathematical model, and

the second being a step from mathematics to computer algorithms and data

structures.

0

The second of these factors accounts for one of the main problems in communicating

simulation data from one model or application to another. In the transformation from

physical system to mathematical model, and the subsequent transformation from

mathematics to data, the semantic links are often lost. Therefore, the application

receiving the data often has no context in which to interpret the numbers and other data

items given to it.

Within the DOE ASCI program, a cross-disciplinary, inter-organizational group has

been tasked with developing solutions to these problems as part of ASCI’S Scientific

Data Management (SDM) effort. This group, called the Data Models and Formats Group

(DMF), has been working to develop a common data model and supporting software. In

addition to the complexity and diversity of representations that plague every ambitious

PSE effort, the ASCI program must also contend with unprecedented scale and

performance requirements. ASCI applications will routinely compute hundreds of

simulation variables comprised of literally billions of computational elements. This puts

ASCI application output squarely in the terascale range. Data modeling and tool

development must therefore not only support a broad range of model representations, but

must integrate them with efficient parallel I/O and communication systems of tremendous

capacity and throughput.

3

Common Data Model Development Ambrosiano, et a1 '

This paper briefly describes the ASCI common data model, its mathematical basis,

and ASCI prototype development. These prototypes include an object-oriented data

management library developed at Los Alamos called the Common Data Model Library or

CDMlib, the Vector Bundle API from the Lawrence Livermore Laboratory, and the DMF

API from Sandia National Laboratory.

2. The ASCI Common Data Model

A useful data model must take into account the relationship between physical systems

and mathematics as well as the relationship between common mathematical entities in

simulations and discrete representations of them employed in computer algorithms. In

this way the semantic connections can be preserved and exploited for data transformation

and management. To satisfy the requirements of the ASCI program, such a model must

be well integrated with parallel I/O and communication.

2.1 Semantic Levels of the Data Model

The current model is comprised of three levels of increasing semantic complexity. A

simplified view of the DMF conceptual architecture is shown in Figure 1. Each layer is

supported by abstractions in the layers below.

The top layer contains entities commonly employed in simulations and therefore

easily apprehended by users. These would include, for example, various categories of

meshes and mesh-based variables. Descriptions of parts and other geometric objects

would also be supported here. Simple finite sets, lists, and maps can be made available as

well, as can ordinary scalar variables and other generally useful features such as

descriptive text fields. To help users manage collections of objects at this level, we would

4

Common Data Model Development Ambrosiano, et a1

likely include a simple hierarchical aggregation mechanism such as an object set or

object group class whose contents can include other object sets or groups.

In the middle is a collection of abstractions drawn from fundamental principles in set

theory and topology called the Fiber Bundle Kernel or FBK. Its role is much the same as

that of the widely used relational data model and has some features in common with it.

The name derives from a series of mathematically motivated data models first proposed

for scientific visualization [Butler and Pendley, 1989; Butler and Bryson, 19921. In

addition to the well-known Cartesian product sets of the relational model, the FBK

introduces important new structures needed to capture the topology of simulation

problem spaces and the often complicated mappings defined on them. The existence of

this layer provides a powerful set of components for reuse in the layers above, and allows

for optimization of storage and retrieval over a very broad range of circumstances.

The bottom layer of the model contains the abstractions that are closest to actual

computer data and record management. It provides abstractions of atomic data types, data

structures and simple containers. It can also support a persistent object model based on

these. Standardized communication protocols and I/O operations live here.

Application Entities I
I Fiber Bundle Kernel I

Object Management, Data Types,
Structures, Containers,
Communication, I/O

Figure 1. Conceptual layers in the ASCI Common Data Model.

5

Common Data Model Development Ambrosiano, et a1 ,

In the current software design, HDFS has been adopted as the primary I/O subsystem

[HDFS, 19981. HDFS is a file format and I/O library for high performance computing and

scientific data management developed by the National Center for Supercomputing

Applications. HDFS provides cross-platform portability of the data and its access

methods within a simple self-describing, array-oriented data model that is easy for

scientists and software developers to use. HDFS is a newly redesigned version of the

HDF format and library [HDF, 19981 that still enjoys widespread support in a scientific

computing community that includes NASA, and the Department of Energy as well as

scientific visualization software vendors. Two special features of HDFS that are of

particular importance for ASCI are its very large capacity, and its direct support of

parallel YO functionality via the MPI YO standard [MPI2, 19971.

2.2 The Fiber Bundle Kernel

In this section we describe the mathematical elements of the Fiber Bundle Kernel.

The key concepts are:

Fiber bundles and manifolds

Cells and cell complexes

Sets and families of subsets

Lattices based on subset inclusion

Families of functions on subsets of a topological space (sheaves) and their

representation spaces

Many of these mathematical concepts were introduced to the DMF effort by Butler

[Butler, 19991. The proposal to make cell complexes an integral part of the model derives

from earlier applications to environmental modeling [Ambrosiano, et al, 19961.

6

Common Data Model Development Ambrosiano, et a1

Fiber bundles. Quantities of various kinds (e.g. temperature, pressure) that are

functions of the problem domain are key features of simulations. Therefore a good

encompassing model for them is important. In order to allow functions to be defined on

subsets of the problem, and to allow the possibility that multiple values may exist for the

same point where subsets overlap, the usual idea of a function must be broadened. This

generalization is a called fiber bundle. Figure 2 illustrates a fiber bundle’s construction.

Base B

Figure 2. A fiber bundle.

Fiber bundles are able to represent globally complex mappings on topological spaces

in a way that is locally simple. Each subset Vi of the domain space B (called the base) has

a local representation of the mapping that resembles an ordinary function. This view,

called a section, is a map from a point in the subset to a corresponding point the Cartesian

product of the subset and the range. Such a view is provided by a topology-preserving

map (homeomorphism) p called the local trivialization. The standard term for the range

set in this context is the “fiber.” Where multiple sections coincide, a mapping wj exists

from a fiber value in one section to a different fiber value in the other. These mappings

form a group called the structure group. There is an additional ingredient, namely a

projection operation n to take us back from anywhere in the bundle to a unique point in

the base. That there exists a unique inverse image in the base for any point in the fiber

7

,

Common Data Model Development Ambrosiano, et a1 '

bundle, is the feature that most resembles the functions to which we are accustomed. The

collection of local trivializations, sections, projection, and structure group mappings, is

what we call a fiber bundle.

While fiber bundles seem exotic, they occur with surprising regularity in practical

modeling applications, particularly in parallel computing. When a problem is

decomposed into subdomains for parallel computation, the subdomains often carry with

them pieces of the adjoining problem space in the form of ghost points or ghost cells. The

collections of data values computed on separate subdomains resemble the sections of a

fiber bundle. In overlapping regions, prior to synchronization, there may be multiple

values of simulation variables for the same point in the problem space. Thus parallel

application builders already work with fiber bundles every day. Another common

example is a mesh-based problem containing separate materials with interfaces at mesh

cell boundaries. Each material region is a subset, and variables like density are actually

separate sections whose values are likely to be different on interface cells (e.g. faces)

shared by adjoining regions. The fiber bundle construction provides the flexibility to

accommodate multiple function values at these interfaces, whereas the usual definition of

a function does not.

Manifolds. Many readers are already familiar with manifolds. A manifold is another

example of a complex entity described in terms of locally simple views as shown in

Figure 3. Here each subset Si of a topological space is allowed to have its own local

coordinate map

subsets Si and Sj overlap, there exists a transformation Tq of coordinates from one local

map to the next so that local coordinates can transition smoothly from one subset to the

that makes the subset seem to be a simple Euclidean space. Where two

8

Common Data Model Development Ambrosiano, et a1

next. The coordinate map associated with a subset is called a chart, and the collection of

all the charts is called an atlas.

1

..+.......e.'

M ' si

\
\
\

\
I

u '\,
5/ I

I
I

I
I

/

Tij

5

Figure 3. A manifold M with its coordinate maps and transformations.

Manifolds are more common in computations than one might think. Aerodynamic

modeling is a prime example. In simulating flow over an airplane's surface, it may be

very difficult to construct one mesh and one set of mesh coordinates that covers the

problem domain. Instead one often covers the surface of the airplane with overlapping

regular meshes, each with its own local (logical) coordinates.

Cells and cell complexes. The idea of cells arises in the context of dividing a

toplogical space into pieces. Such an idea is natural in computational modeling where the

problem space is often divided into subdomains. A cell is a closed subset of a Euclidean

space homeomorphic to the closure of a subset of some topological space [Thurston,

19971. The homeomorphisms that define cells are often chosen for convenience to map

the subsets into polyhedrons.

Cells are characterized by their dimension. In three dimensions a zero-cell would be

called a vertex, a one-cell an edge, and a two-cell a face. A cell complex is a partition of

9

Common Data Model Development Ambrosiano, et al

the space into cells in such a way that the boundary of any n-cell is contained in the union

of all cells of dimension less than n. The partition of a portion of the Euclidean space @

into polygons is illustrated in Figure 4.

Figure 4. A cell complex of polygons in @

Each two-cell in the figure is bounded by one-cells, and adjacent two-cells have

common boundaries. The one-cells are themselves bounded by zero-cells. The total

collection of all these cells (of dimension, zero, one, and two) constitutes the cell

complex. Cell complexes discretize a continuous problem domain, having an infinite

number of points and an arbitrary collection of open subsets, into a finite collection of

closed subsets related to one another in an explicit fashion. The intersections of cells in a

cell complex are contained in the cell complex by construction, and the unions of cells

are simple to describe. Cell complexes are, by construction, manifolds whose structure is

straightforward and explicit.

Cell complexes are a good model for many discretizations occurring in practice.

Computational meshes are easy to interpret in terms of a cell complex model, and many

B-rep descriptions of geometry based on polygonal facets or NURl3 patches can also be

interpreted in this way. There is also a close relationship between finite element

discretizations and cell complexes. However, the cell complex model is much broader.

10

Common Data Model Development Ambrosiano, et a1

Subsets and Inclusion Lattices. A family of subsets is an instance of a partially

ordered set or poset. A poset is any set for which an ordering relation among the elements

exists. The ordering relationship among elements of a family of subsets is subset

inclusion. Let Sf and S;. be subsets of a set X. We say that

subsets (or the elements of any poset) can be arranged in a directed graph [Szasz, 19631.

Such a graph is constructed by assigning a node to every element and connecting nodes

by arrows using the following rule. If an element is larger than another element, an arrow

connects the smaller element to the larger one. An arrow connects two elements x and y if

and only if there is no other element z such that x2z2y. Figure 2 shows the poset graph of

a partially ordered set of elements {a,b,c,d,e,f). From the graph we can see that the set has

a maximum equal to a, but no single minimum. Also some elements such as d andfare

not directly comparable, although d andfcan each be said to be smaller than b. When a

poset is constructed from a family of subsets, the entire set and the empty or null set Cp are

both included in the graph at the top and bottom respectively. That is, all sets are less

than or equal to the entire set, and all sets are greater than the null set.

if SQ&. A family of

Figure 5. A poset graph for the set {a,b,c,d,e,fl.

Posets are related to a class of algebraic structures called lattices. For this reason we

call the poset graphs for families of subsets inclusion lattices. The inclusion lattice

construction provides a practical as well as a mathematically sound strategy for

1 1

Common Data Model Development Ambrosiano, et a1

representing the topology of a space in terms of a covering of subsets. For example, the

subsets represented by a cell complex can be arranged in a graph such as Figure 5. Once

this is done, it is straightforward to exploit knowledge of cell unions, intersections, and

inclusion relations by simply traversing the graph. There is also another useful feature.

Members of a lattice that cannot be expressed as the union or join of other members are

called the join-irreducible members. These constitute a basis for representing other

members according to the Birkhoff representation theorem [Birkhoff, 19671. In other

words, there exists a minimal set of elements for expressing topological relationships in

lattice form.

Presheaves, Sheaves, and Section Representation Spaces. In the approximation of

functions or fiber bundles on continuous domains, two discretization steps can be

identified. The first is the decomposition of the space into the cells of a cell complex.

Once this is done, a discrete manifold structure exists by construction. On this manifold

one can define a single global coordinate space or, if one wishes, an atlas of local

coordinate maps. This structure also supports the definition of either a single global

function, or alternatively, a finite set of fiber bundle sections with the cell complex as the

base. Sections can in principle be defined on any cell of any dimension. For example, in

the cell complex of Figure 4, sections might be defined on each of the polygons as well as

each of the edges and vertices. Each section is potentially continuous.

A second discretization is necessary to approximate continuous sections by a finite set

of values. For example, a section defined on a polygon of Figure 4 could be

approximated by a constant function. The value of the function everywhere in the cell

would in that case require the specification of only one number.

12

Common Data Model Development Ambrosiano, et a1

This construction can be generalized by allowing each subset of the domain (e.g. as

represented by a cell) to be associated with a family of sections restricted to the subset. A

mapping from subsets of a topological to a family of sections is technically known as a

presheaf of sets. Additional properties, having to do with how such a family behaves

when restricted to open coverings of each subset, may qualify some presheaves as

sheaves of sets [Tennison, 19751. In practical terms, a (pre)sheaf construction allows each

cell in the model to be associated with a prescription that identifies a particular family of

sections. If this prescription is expressed in terms of a discrete set of values (as in our

constant function example), then a second level of discretization is obtained. We call

these discrete values the “degrees of freedom” for the section family and their range (e.g.,

type, allowed values) defines a Cartesian product space called the “section representation

space.” This space is different in general than the fiber of the section being approximated.

Choosing specific values from the section representation space selects a particular

function representation from the family of sections.

In spite of the unfamiliar terminology, this construction should be familiar to

modelers. In mixed finite element approximations, cells of different types, such as quads

and triangles are associated with different finite element basis functions. These are really

families of functions. The integration points of finite elements correspond to our degrees

of freedom. It is important to understand that the generalization discussed here, while

covering familiar examples like finite elements, is actually much broader and can

accommodate virtually any computational representation including spectral and

pseudospectral expansions. The sheaf, introduced in the DMF model by Butler, is the

most recent data model addition and one that provides a bonafide mathematical

13

Common Data Model Development Ambrosiano, etal '

interpretation for constructions that have been routinely employed in computational

settings. We have recently learned that sheaves have lately been applied independently by

Oliviera in the field of bio-informatics [Oliviera, 19991. ,

Integrating Mathematical Concepts in the DMF Model. What we have called the

DMF Fiber Bundle Kernel is more than a miscellaneous collection of interesting

mathematical concepts. It is a synthesis of particular mathematical elements into an

integrated data model. Each of the entities introduced was driven by requirements and

scenarios elicited during analysis of the ASCI computational problem domain. Several of

the computational scenarios described above allude to this. To make some relationships

more explicit consider the semantic map of Figure 5.

\
\
\
\
I

Figure 5. A semantic map of the data model.

Roughly speaking, this map shows semantic relationships between the various

mathematical elements of the model. For example, the computational meshes and mesh-

approximated functions are related to more fundamental entities such as cell complexes,

manifolds, and fiber bundles. These are in turn related to topological spaces and their

14

c

<

1 Common Data Model Development Ambrosiano, et a1

representation as families of subsets ordered by inclusion. Discretization of the section

spaces brings in sheaves and section representation spaces with their degrees of freedom.

All discretized entities can be interpreted in terms of finite sets and discrete maps. Finite

sets and discrete maps are also a good match to computational data structures such as

arrays, lists, and so on. Thus the integrated model establishes clear semantic relationships

between highly abstract entities like fiber bundles, cell complexes, and sheaves, and

relates them to well-known discrete computational entities such as meshes and mesh-

based variables. Discrete entities can then be related, via finite sets and discrete maps, to

concrete data structures like arrays.

3. Data Model Prototypes

The DMF group has made considerable progress, both in its theoretical efforts and in

developing practical and useful prototypes. Each prototype contributes to the goal of

achieving a common data model and supporting software based on the conceptual

architecture of Figure 1. Each also produces usable products in the near term.

3.1 CDMlib

CDMlib is a DMF prototype developed at Los Alamos National Laboratory. The

main goals of CDMlib are to develop specific mesh and mesh-based variable classes

while exploiting underlying mathematical elements from the ASCI DMF model. CDMlib

is a C++ class library that appears to users as an object-oriented run-time database with a

set of pre-defined object classes. Users can program applications using the C++ classes

directly, or by using the procedural APIs provided for C and Fortran. DMF model entities

are incorporated directly into CDMlib classes without a specific implementation of the

Fiber Bundle Kernel layer. In this way CDMlib is able to explore a wide range of

15

Common Data Model Development Ambrosiano, et a1 I .
possible representations and methods for FBK entities within the same implementation.

CDMlib is currently a serial library undergoing design modifications in order to add

parallel features.

CDMlib provides two basic categories of meshes: product meshes and unstructured

meshes, as shown in Figure 6. Simulation fields are defined in terms of these. The meshes

conform to the cell complex model. Thus, the data are mapped as discrete values onto

some subset of the mesh cells, e.g., zones, faces, vertices, etc. In this way CDMlib

supports a wide range of common mesh representations and data centering schemes. The

library also includes an array object for general-purpose data storage, and a hierarchical

arrangement of objects within the file based on an object set construction.

Figure 6. Several mesh object types supported in CDMlib. The first two meshes are
variations on the theme of a product mesh or regular mesh. The second two are variants

of the unstructured mesh type.

3.2 VB API and DMF API

The VB API and DMF API prototypes, developed at Lawrence Livermore National

Laboratory and Sandia National Laboratory respectively, represent an attempt to

implement the complete architecture of Figure 1.

The Vector Bundle API or VB API is based on early specifications of the Fiber

Bundle Kernel that incorporate some, but not all of the elements described above. The

term vector bundle comes from a specialization of fiber bundles to fibers that are vector

spaces. The underlying data structures in VB API are relations or tables, and the

16

I
P

I

z

c Common Data Model Development Ambrosiano, et a1 .
programmer uses the API to instantiate records in one or more of these tables. VB API

entities currently include CELL, INCLUSION-MAP, FIBER, BUNDLE, and FIELD, as

well as one or two others related directly to storage. Here CELL refers to degrees of

freedom associated with a subset, and FIELD, is the term used for a fiber bundle section.

I

The implementation is fully parallel, exploiting the collective parallel communication

features of parallel HDFS. It is built on a supporting layer that manages table and data

type descriptions and mediates between the upper layer and HDF.

The DMF API is a parallel prototype of the application layer of Figure 1. It is based

on a procedurally-implemented object-oriented design. The objects currently included are

SET, FIELD-TEMPLATE, STATE-TEMPLATE, STATE, and SEQUENCE. In this

case SET takes on the same role as CELL in the VB API, and FIELDTEMPLATE

corresponds to BUNDLE. STATE and STATE-TEMPLATE, are entities introduced to

contain whole collections of variables corresponding to a given base set. SEQUENCE is

introduced in order to support the use of time or some other simulation parameter to

denote a series of simulation states.

VB API and DMF API are designed to be integrated into a complete top-to-bottom

parallel prototype of the proposed DMF architecture.

Acknowledgement

The authors wish to thank our many colleagues and ASCI application team members
for their suggestions and advice in developing the data model. We are especially grateful
to the members of the software development teams including Jim Reus, Tom Robey, Jim
Holten, Jonathan Parker, Ted Reed, and Pat Medvick. This work was supported by xxxx.

References

Ambrosiano, John, Carlie Coats, Mark Reed, Atanas Trayanov, Richard Loft, Celeste
Matarazzo, Tim Turner, Mladen Vouk, “Data Archetypes for the Fusion of Parallel
Simulation Codes in Climate Modeling and Other Applications,” Proc. of the 2nd

17

Common Data Model Development

.
8

\
- I

0 Ambrosiano, et a1 .
Workshop on Parallel Object-Oriented Methods and Applications (POOMA), Santa Fe,
NM (1996).

Birkhoff, Garrett, Lattice Theory, Amer. Math. Soc., 1967.

Butler, D.M. and M.H. Pendley, “A Visualization Model Based on the Mathematics of
Fiber Bundles,” Computers in Physics, September/October (1 989).

Butler, David M., and Bryson, Steve, “Vector-Bundle Classes Form Powerful Tool for
Scientific Visualization,” Computers in Physics, 6 (6), 576-584 (1 992).

Butler, D.M., paper in preparation (1999).

HDFS, Introduction to HDFS Release 1.0,
http://hdf.ncsa.uiuc.eduMDF5/doc/H5.intro.htmI, 1998.

HDF, HDF4.lr2 Users Guide, http://hdf.ncsa.uiuc.edu/trai
1998.

i g/HDFtraining/UsersGuide,

Larzelere, A.R., 11, “Creating simulation capabilities,” IEEE Computational Science and
Engineering, Jan.-March, 5, 1 (1998).

forum. org/docs/mpi-20-html/mpi2-report.html, 1 997.

.

MPI2, MPI-2: Extensions to the Message-Passing Inteqace, http://www .mpi-

Novak, J.H., J.O. Young, D.W..Byun, C.J. Coats, G.L. Walter, W.G. Benjey, G.L.
Gipson, S. K. LeDuc. Models-3: A Unifying Framework for Environmental Modeling
and Assessment, Proceedings of the American Meterological Society 78th Annual
Meeting, January 11-16, 1998, Phoenix, AZ.

Oliviera, Joseph S. , private communication and unpublished notes (1999).

Szasz, Gabor, Introduction to Lattice Theory, Acad. Press, 1963.

Tennison, B.R., Sheaf Theory, Cambridge, 1975.

Thurston, William P., Three-Dimensional Geometry and Topology, Volume I , Princeton,
1997.

18

http://hdf.ncsa.uiuc.eduMDF5/doc/H5.intro.htmI
http://hdf.ncsa.uiuc.edu/trai
http://www

