
, 

t 

Approved forpublic release; 
distribution is unlimited. 

Title 

Author@) 

Submitted to. 

Development of a Common Data 
Model for Scientific Simulations 

John Ambrosiano, Los Alamos National Laboratory 
David M. Butler, Limit Point Systems, Inc. 
Celeste Matarazzo, Lawrence Livermore National Laboratory 
Mark Miller, Lawrence Livermore National Laboratory 
Larry Schoof, Sandia National Laboratory 

1 1 th International Conference 
on Scientific and Statistical 
Database Management 
Cleveland, OH 
July 28-30, 1999 

Los Alamos 
N AT I 0 N A L LAB 0 R A T 0  RY 
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. 
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the US. Government 
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for US. 
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the 
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to 
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (1 0/96) 



DISCLAIMER 

This report was prepared as an account of work spomred by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor 
any of their employees, make any warranty, e x p m  or implied, or assumes any legal liabii- 
ty or responsibility for the accuracy, completeness, or usefulness of any  information, appa- 
ratus, product, or process disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not necessan'ly constitute or 
imply its endorsement, recommendation, or favoring by the United States Government or 
any agency thereof. The views and opinions of authors expressed herein do not necessar- 
ily state or reflect those of the United States Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 



Common Data Model Development Ambrosiano, et a1 

Development of a Common Data Model for Scientific Simulations 

John Ambrosiano, Los Alamos National Laboratory 
David M. Butler, Limit Point Systems, Inc. 

Celeste Matarazzo, Mark Miller, Lawrence Livermore National Laboratory 
Larry SchooJ Sandia National Laboratory 

Abstract 

The problem of sharing data among scientific simulation models is a difficult 
and persistent one. Computational scientists employ an enormous variety of 
discrete approximations in modeling physical processes on computers. Problems 
occur when models based on different representations are required to exchange 
data with one another, or with some other software package. Within the DOE’S 
Accelerated Strategic Computing Initiative (ASCI), a cross-disciplinary group 
called the Data Models and Formats (DMF) group, has been working to develop a 
common data model. The current model is comprised of several layers of 
increasing semantic complexity. One of these layers is an abstract model based on 
set theory and topology called the fiber bundle kernel (FBK). This layer provides 
the flexibility needed to describe a wide range of mesh-approximated functions as 
well as other entities. This paper briefly describes the ASCI common data model, 
its mathematical basis, and ASCI prototype development. These prototypes 
include an object-oriented data management library developed at Los Alamos 
called the Common Data Model Library or CDMlib, the Vector Bundle API from 
the Lawrence Livermore Laboratory, and the DMF API from Sandia National 
Laboratory. 

1. Introduction 

Computational scientists employ an enormous variety of discrete approximations in 

modeling physical processes on computers. Within a given model, discrete 

representations and numerical algorithms are chosen to achieve the greatest fidelity and 

computational efficiency. 

The range of computational representations in simulation is extremely broad. Some 

simulation variables are finite and discrete, while others are approximations of functions 

on continuous spaces. In the latter case, continuous problem domains must be first 

discretized. Discretization often takes the form of a grid of sample points or alternatively 

a decomposition into cells or elements. However, other representations may also be 
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employed. These may include representations such as spectral or pseudospectral 

expansions, e.g. Fourier or wavelet transforms. 

Serious problems can occur when models based on different representations are 

required to exchange data, or when input and output data related to simulations must be 

interpreted by other applications. For example, initial problem geometry and grid might 

be generated using commercial CAD and grid generation software. This information must 

then be communicated to the simulation code. A similar problem may occur in 

transferring simulation output to commercial visualization or statistical analysis software. 

Data exchange problems can also arise when individual sub-models are incorporated into 

larger, collaborative, multi-discipline frameworks. The trend toward building large-scale, 

high-performance, multi-discipline problem-solving environments (PSEs) has promoted 

data exchange problems to near-crisis levels. 

Examples of ambitious, multi-discipline PSEs are to be found in the Environmental 

Protection Agency’s emerging framework for integrated air and water quality models 

[Novak, et al, 19981 as well as within the Department of Energy’s Accelerated Strategic 

Computing Initiative (ASCI) [Larzelere, 19981. The aim of the EPA framework is to 

enable more realistic simulations of coupled ecosystems. The goal of the ASCI program 

is to support science-based stewardship of the nation’s nuclear stockpile under conditions 

of a comprehensive nuclear test ban. 

The essential problem of sharing simulation data can be stated as follows. 

Simulations are intended to be models of physical reality that mimic some essential 

features of the real system so as to predict aspects of its behavior. Data sharing can be 

challenging for many reasons, but two very important ones are: 
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The complexity of a real system is many times greater than that of a computer 

program. Real systems are often infinite and continuous, whereas a computer 

simulation is finite and discrete. 

The real system is at least two levels of abstraction removed from the computer 

program. The first level being the step from reality to a mathematical model, and 

the second being a step from mathematics to computer algorithms and data 

structures. 

0 

The second of these factors accounts for one of the main problems in communicating 

simulation data from one model or application to another. In the transformation from 

physical system to mathematical model, and the subsequent transformation from 

mathematics to data, the semantic links are often lost. Therefore, the application 

receiving the data often has no context in which to interpret the numbers and other data 

items given to it. 

Within the DOE ASCI program, a cross-disciplinary, inter-organizational group has 

been tasked with developing solutions to these problems as part of ASCI’S Scientific 

Data Management (SDM) effort. This group, called the Data Models and Formats Group 

(DMF), has been working to develop a common data model and supporting software. In 

addition to the complexity and diversity of representations that plague every ambitious 

PSE effort, the ASCI program must also contend with unprecedented scale and 

performance requirements. ASCI applications will routinely compute hundreds of 

simulation variables comprised of literally billions of computational elements. This puts 

ASCI application output squarely in the terascale range. Data modeling and tool 

development must therefore not only support a broad range of model representations, but 

must integrate them with efficient parallel I/O and communication systems of tremendous 

capacity and throughput. 
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This paper briefly describes the ASCI common data model, its mathematical basis, 

and ASCI prototype development. These prototypes include an object-oriented data 

management library developed at Los Alamos called the Common Data Model Library or 

CDMlib, the Vector Bundle API from the Lawrence Livermore Laboratory, and the DMF 

API from Sandia National Laboratory. 

2. The ASCI Common Data Model 

A useful data model must take into account the relationship between physical systems 

and mathematics as well as the relationship between common mathematical entities in 

simulations and discrete representations of them employed in computer algorithms. In 

this way the semantic connections can be preserved and exploited for data transformation 

and management. To satisfy the requirements of the ASCI program, such a model must 

be well integrated with parallel I/O and communication. 

2.1 Semantic Levels of the Data Model 

The current model is comprised of three levels of increasing semantic complexity. A 

simplified view of the DMF conceptual architecture is shown in Figure 1. Each layer is 

supported by abstractions in the layers below. 

The top layer contains entities commonly employed in simulations and therefore 

easily apprehended by users. These would include, for example, various categories of 

meshes and mesh-based variables. Descriptions of parts and other geometric objects 

would also be supported here. Simple finite sets, lists, and maps can be made available as 

well, as can ordinary scalar variables and other generally useful features such as 

descriptive text fields. To help users manage collections of objects at this level, we would 
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likely include a simple hierarchical aggregation mechanism such as an object set or 

object group class whose contents can include other object sets or groups. 

In the middle is a collection of abstractions drawn from fundamental principles in set 

theory and topology called the Fiber Bundle Kernel or FBK. Its role is much the same as 

that of the widely used relational data model and has some features in common with it. 

The name derives from a series of mathematically motivated data models first proposed 

for scientific visualization [Butler and Pendley, 1989; Butler and Bryson, 19921. In 

addition to the well-known Cartesian product sets of the relational model, the FBK 

introduces important new structures needed to capture the topology of simulation 

problem spaces and the often complicated mappings defined on them. The existence of 

this layer provides a powerful set of components for reuse in the layers above, and allows 

for optimization of storage and retrieval over a very broad range of circumstances. 

The bottom layer of the model contains the abstractions that are closest to actual 

computer data and record management. It provides abstractions of atomic data types, data 

structures and simple containers. It can also support a persistent object model based on 

these. Standardized communication protocols and I/O operations live here. 

Application Entities I 
I Fiber Bundle Kernel I 

Object Management, Data Types, 
Structures, Containers, 
Communication, I/O 

Figure 1. Conceptual layers in the ASCI Common Data Model. 
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In the current software design, HDFS has been adopted as the primary I/O subsystem 

[HDFS, 19981. HDFS is a file format and I/O library for high performance computing and 

scientific data management developed by the National Center for Supercomputing 

Applications. HDFS provides cross-platform portability of the data and its access 

methods within a simple self-describing, array-oriented data model that is easy for 

scientists and software developers to use. HDFS is a newly redesigned version of the 

HDF format and library [HDF, 19981 that still enjoys widespread support in a scientific 

computing community that includes NASA, and the Department of Energy as well as 

scientific visualization software vendors. Two special features of HDFS that are of 

particular importance for ASCI are its very large capacity, and its direct support of 

parallel YO functionality via the MPI YO standard [MPI2, 19971. 

2.2 The Fiber Bundle Kernel 

In this section we describe the mathematical elements of the Fiber Bundle Kernel. 

The key concepts are: 

Fiber bundles and manifolds 

Cells and cell complexes 

Sets and families of subsets 

Lattices based on subset inclusion 

Families of functions on subsets of a topological space (sheaves) and their 

representation spaces 

Many of these mathematical concepts were introduced to the DMF effort by Butler 

[Butler, 19991. The proposal to make cell complexes an integral part of the model derives 

from earlier applications to environmental modeling [Ambrosiano, et al, 19961. 
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Fiber bundles. Quantities of various kinds (e.g. temperature, pressure) that are 

functions of the problem domain are key features of simulations. Therefore a good 

encompassing model for them is important. In order to allow functions to be defined on 

subsets of the problem, and to allow the possibility that multiple values may exist for the 

same point where subsets overlap, the usual idea of a function must be broadened. This 

generalization is a called fiber bundle. Figure 2 illustrates a fiber bundle’s construction. 

Base B 

Figure 2. A fiber bundle. 

Fiber bundles are able to represent globally complex mappings on topological spaces 

in a way that is locally simple. Each subset Vi of the domain space B (called the base) has 

a local representation of the mapping that resembles an ordinary function. This view, 

called a section, is a map from a point in the subset to a corresponding point the Cartesian 

product of the subset and the range. Such a view is provided by a topology-preserving 

map (homeomorphism) p called the local trivialization. The standard term for the range 

set in this context is the “fiber.” Where multiple sections coincide, a mapping wj exists 

from a fiber value in one section to a different fiber value in the other. These mappings 

form a group called the structure group. There is an additional ingredient, namely a 

projection operation n to take us back from anywhere in the bundle to a unique point in 

the base. That there exists a unique inverse image in the base for any point in the fiber 
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bundle, is the feature that most resembles the functions to which we are accustomed. The 

collection of local trivializations, sections, projection, and structure group mappings, is 

what we call a fiber bundle. 

While fiber bundles seem exotic, they occur with surprising regularity in practical 

modeling applications, particularly in parallel computing. When a problem is 

decomposed into subdomains for parallel computation, the subdomains often carry with 

them pieces of the adjoining problem space in the form of ghost points or ghost cells. The 

collections of data values computed on separate subdomains resemble the sections of a 

fiber bundle. In overlapping regions, prior to synchronization, there may be multiple 

values of simulation variables for the same point in the problem space. Thus parallel 

application builders already work with fiber bundles every day. Another common 

example is a mesh-based problem containing separate materials with interfaces at mesh 

cell boundaries. Each material region is a subset, and variables like density are actually 

separate sections whose values are likely to be different on interface cells (e.g. faces) 

shared by adjoining regions. The fiber bundle construction provides the flexibility to 

accommodate multiple function values at these interfaces, whereas the usual definition of 

a function does not. 

Manifolds. Many readers are already familiar with manifolds. A manifold is another 

example of a complex entity described in terms of locally simple views as shown in 

Figure 3. Here each subset Si of a topological space is allowed to have its own local 

coordinate map 

subsets Si and Sj overlap, there exists a transformation Tq of coordinates from one local 

map to the next so that local coordinates can transition smoothly from one subset to the 

that makes the subset seem to be a simple Euclidean space. Where two 
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next. The coordinate map associated with a subset is called a chart, and the collection of 

all the charts is called an atlas. 
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Figure 3. A manifold M with its coordinate maps and transformations. 

Manifolds are more common in computations than one might think. Aerodynamic 

modeling is a prime example. In simulating flow over an airplane's surface, it may be 

very difficult to construct one mesh and one set of mesh coordinates that covers the 

problem domain. Instead one often covers the surface of the airplane with overlapping 

regular meshes, each with its own local (logical) coordinates. 

Cells and cell complexes. The idea of cells arises in the context of dividing a 

toplogical space into pieces. Such an idea is natural in computational modeling where the 

problem space is often divided into subdomains. A cell is a closed subset of a Euclidean 

space homeomorphic to the closure of a subset of some topological space [Thurston, 

19971. The homeomorphisms that define cells are often chosen for convenience to map 

the subsets into polyhedrons. 

Cells are characterized by their dimension. In three dimensions a zero-cell would be 

called a vertex, a one-cell an edge, and a two-cell a face. A cell complex is a partition of 
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the space into cells in such a way that the boundary of any n-cell is contained in the union 

of all cells of dimension less than n. The partition of a portion of the Euclidean space @ 

into polygons is illustrated in Figure 4. 

Figure 4. A cell complex of polygons in @ 

Each two-cell in the figure is bounded by one-cells, and adjacent two-cells have 

common boundaries. The one-cells are themselves bounded by zero-cells. The total 

collection of all these cells (of dimension, zero, one, and two) constitutes the cell 

complex. Cell complexes discretize a continuous problem domain, having an infinite 

number of points and an arbitrary collection of open subsets, into a finite collection of 

closed subsets related to one another in an explicit fashion. The intersections of cells in a 

cell complex are contained in the cell complex by construction, and the unions of cells 

are simple to describe. Cell complexes are, by construction, manifolds whose structure is 

straightforward and explicit. 

Cell complexes are a good model for many discretizations occurring in practice. 

Computational meshes are easy to interpret in terms of a cell complex model, and many 

B-rep descriptions of geometry based on polygonal facets or NURl3 patches can also be 

interpreted in this way. There is also a close relationship between finite element 

discretizations and cell complexes. However, the cell complex model is much broader. 
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Subsets and Inclusion Lattices. A family of subsets is an instance of a partially 

ordered set or poset. A poset is any set for which an ordering relation among the elements 

exists. The ordering relationship among elements of a family of subsets is subset 

inclusion. Let Sf  and S;. be subsets of a set X. We say that 

subsets (or the elements of any poset) can be arranged in a directed graph [Szasz, 19631. 

Such a graph is constructed by assigning a node to every element and connecting nodes 

by arrows using the following rule. If an element is larger than another element, an arrow 

connects the smaller element to the larger one. An arrow connects two elements x and y if 

and only if there is no other element z such that x2z2y. Figure 2 shows the poset graph of 

a partially ordered set of elements {a,b,c,d,e,f). From the graph we can see that the set has 

a maximum equal to a, but no single minimum. Also some elements such as d andfare 

not directly comparable, although d andfcan each be said to be smaller than b. When a 

poset is constructed from a family of subsets, the entire set and the empty or null set Cp are 

both included in the graph at the top and bottom respectively. That is, all sets are less 

than or equal to the entire set, and all sets are greater than the null set. 

if SQ&. A family of 

Figure 5. A poset graph for the set {a,b,c,d,e,fl. 

Posets are related to a class of algebraic structures called lattices. For this reason we 

call the poset graphs for families of subsets inclusion lattices. The inclusion lattice 

construction provides a practical as well as a mathematically sound strategy for 
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representing the topology of a space in terms of a covering of subsets. For example, the 

subsets represented by a cell complex can be arranged in a graph such as Figure 5. Once 

this is done, it is straightforward to exploit knowledge of cell unions, intersections, and 

inclusion relations by simply traversing the graph. There is also another useful feature. 

Members of a lattice that cannot be expressed as the union or join of other members are 

called the join-irreducible members. These constitute a basis for representing other 

members according to the Birkhoff representation theorem [Birkhoff, 19671. In other 

words, there exists a minimal set of elements for expressing topological relationships in 

lattice form. 

Presheaves, Sheaves, and Section Representation Spaces. In the approximation of 

functions or fiber bundles on continuous domains, two discretization steps can be 

identified. The first is the decomposition of the space into the cells of a cell complex. 

Once this is done, a discrete manifold structure exists by construction. On this manifold 

one can define a single global coordinate space or, if one wishes, an atlas of local 

coordinate maps. This structure also supports the definition of either a single global 

function, or alternatively, a finite set of fiber bundle sections with the cell complex as the 

base. Sections can in principle be defined on any cell of any dimension. For example, in 

the cell complex of Figure 4, sections might be defined on each of the polygons as well as 

each of the edges and vertices. Each section is potentially continuous. 

A second discretization is necessary to approximate continuous sections by a finite set 

of values. For example, a section defined on a polygon of Figure 4 could be 

approximated by a constant function. The value of the function everywhere in the cell 

would in that case require the specification of only one number. 
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This construction can be generalized by allowing each subset of the domain (e.g. as 

represented by a cell) to be associated with a family of sections restricted to the subset. A 

mapping from subsets of a topological to a family of sections is technically known as a 

presheaf of sets. Additional properties, having to do with how such a family behaves 

when restricted to open coverings of each subset, may qualify some presheaves as 

sheaves of sets [Tennison, 19751. In practical terms, a (pre)sheaf construction allows each 

cell in the model to be associated with a prescription that identifies a particular family of 

sections. If this prescription is expressed in terms of a discrete set of values (as in our 

constant function example), then a second level of discretization is obtained. We call 

these discrete values the “degrees of freedom” for the section family and their range (e.g., 

type, allowed values) defines a Cartesian product space called the “section representation 

space.” This space is different in general than the fiber of the section being approximated. 

Choosing specific values from the section representation space selects a particular 

function representation from the family of sections. 

In spite of the unfamiliar terminology, this construction should be familiar to 

modelers. In mixed finite element approximations, cells of different types, such as quads 

and triangles are associated with different finite element basis functions. These are really 

families of functions. The integration points of finite elements correspond to our degrees 

of freedom. It is important to understand that the generalization discussed here, while 

covering familiar examples like finite elements, is actually much broader and can 

accommodate virtually any computational representation including spectral and 

pseudospectral expansions. The sheaf, introduced in the DMF model by Butler, is the 

most recent data model addition and one that provides a bonafide mathematical 
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interpretation for constructions that have been routinely employed in computational 

settings. We have recently learned that sheaves have lately been applied independently by 

Oliviera in the field of bio-informatics [Oliviera, 19991. , 

Integrating Mathematical Concepts in the DMF Model. What we have called the 

DMF Fiber Bundle Kernel is more than a miscellaneous collection of interesting 

mathematical concepts. It is a synthesis of particular mathematical elements into an 

integrated data model. Each of the entities introduced was driven by requirements and 

scenarios elicited during analysis of the ASCI computational problem domain. Several of 

the computational scenarios described above allude to this. To make some relationships 

more explicit consider the semantic map of Figure 5. 

\ 
\ 
\ 
\ 
I 

Figure 5. A semantic map of the data model. 

Roughly speaking, this map shows semantic relationships between the various 

mathematical elements of the model. For example, the computational meshes and mesh- 

approximated functions are related to more fundamental entities such as cell complexes, 

manifolds, and fiber bundles. These are in turn related to topological spaces and their 

14 



c 

< 

1 Common Data Model Development Ambrosiano, et a1 

representation as families of subsets ordered by inclusion. Discretization of the section 

spaces brings in sheaves and section representation spaces with their degrees of freedom. 

All discretized entities can be interpreted in terms of finite sets and discrete maps. Finite 

sets and discrete maps are also a good match to computational data structures such as 

arrays, lists, and so on. Thus the integrated model establishes clear semantic relationships 

between highly abstract entities like fiber bundles, cell complexes, and sheaves, and 

relates them to well-known discrete computational entities such as meshes and mesh- 

based variables. Discrete entities can then be related, via finite sets and discrete maps, to 

concrete data structures like arrays. 

3. Data Model Prototypes 

The DMF group has made considerable progress, both in its theoretical efforts and in 

developing practical and useful prototypes. Each prototype contributes to the goal of 

achieving a common data model and supporting software based on the conceptual 

architecture of Figure 1. Each also produces usable products in the near term. 

3.1 CDMlib 

CDMlib is a DMF prototype developed at Los Alamos National Laboratory. The 

main goals of CDMlib are to develop specific mesh and mesh-based variable classes 

while exploiting underlying mathematical elements from the ASCI DMF model. CDMlib 

is a C++ class library that appears to users as an object-oriented run-time database with a 

set of pre-defined object classes. Users can program applications using the C++ classes 

directly, or by using the procedural APIs provided for C and Fortran. DMF model entities 

are incorporated directly into CDMlib classes without a specific implementation of the 

Fiber Bundle Kernel layer. In this way CDMlib is able to explore a wide range of 
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possible representations and methods for FBK entities within the same implementation. 

CDMlib is currently a serial library undergoing design modifications in order to add 

parallel features. 

CDMlib provides two basic categories of meshes: product meshes and unstructured 

meshes, as shown in Figure 6. Simulation fields are defined in terms of these. The meshes 

conform to the cell complex model. Thus, the data are mapped as discrete values onto 

some subset of the mesh cells, e.g., zones, faces, vertices, etc. In this way CDMlib 

supports a wide range of common mesh representations and data centering schemes. The 

library also includes an array object for general-purpose data storage, and a hierarchical 

arrangement of objects within the file based on an object set construction. 

Figure 6. Several mesh object types supported in CDMlib. The first two meshes are 
variations on the theme of a product mesh or regular mesh. The second two are variants 

of the unstructured mesh type. 

3.2 VB API and DMF API 

The VB API and DMF API prototypes, developed at Lawrence Livermore National 

Laboratory and Sandia National Laboratory respectively, represent an attempt to 

implement the complete architecture of Figure 1. 

The Vector Bundle API or VB API is based on early specifications of the Fiber 

Bundle Kernel that incorporate some, but not all of the elements described above. The 

term vector bundle comes from a specialization of fiber bundles to fibers that are vector 

spaces. The underlying data structures in VB API are relations or tables, and the 
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programmer uses the API to instantiate records in one or more of these tables. VB API 

entities currently include CELL, INCLUSION-MAP, FIBER, BUNDLE, and FIELD, as 

well as one or two others related directly to storage. Here CELL refers to degrees of 

freedom associated with a subset, and FIELD, is the term used for a fiber bundle section. 

I 

The implementation is fully parallel, exploiting the collective parallel communication 

features of parallel HDFS. It is built on a supporting layer that manages table and data 

type descriptions and mediates between the upper layer and HDF. 

The DMF API is a parallel prototype of the application layer of Figure 1. It is based 

on a procedurally-implemented object-oriented design. The objects currently included are 

SET, FIELD-TEMPLATE, STATE-TEMPLATE, STATE, and SEQUENCE. In this 

case SET takes on the same role as CELL in the VB API, and FIELDTEMPLATE 

corresponds to BUNDLE. STATE and STATE-TEMPLATE, are entities introduced to 

contain whole collections of variables corresponding to a given base set. SEQUENCE is 

introduced in order to support the use of time or some other simulation parameter to 

denote a series of simulation states. 

VB API and DMF API are designed to be integrated into a complete top-to-bottom 

parallel prototype of the proposed DMF architecture. 
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