N/S^

PARTICLE ACCELERATION BY TURBULENT MAGNETOHYDRODYNAMIC RECONNECTION

W. H. Matthaeus
J. J. Ambrosiano and M. L. Goldstein

JUNE 1984

National Aeronautics and
Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

N/S^ Technical Memorandum 86121

PARTICLE ACCELERATION BY TURBULENT MAGNETOHYDRODYNAMIC RECONNECTION

W. H. Matthaeus
J. J. Ambrosiano and M. L. Goldstein

JUNE 1984

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

W. H. Matthaeus

Bartol Research Foundation
University of Delaware
Newark, DE 19716
J. J. Ambrosiano Berkeley Research Associates P. O. Box 852 Springfield, VA 22150
M. L. Goldstein

Code 692, Laboratory for Extraterrestrial Physics NASA Goddard Space Flight Center Greenbelt, MD 20771

Test particles in a two dimensional, turbulent MHD simulation are found to undergo significant acceleration. The magnetic field configuration is a periodic sheet pinch which undergoes reconnection. ... The test particles are trapped in the reconnection region for times of order an Alfvén transit time in the large electric fields. that characterize the Iurbulent reconnection process at ...the relatively large : magnetic . Reynolds number :used in the simulation. The maximum speed attained by these particles is consistent with an analytic estimate which depends on the reconnection electric field, the Alfvén speed, and the ratio of Larmor period to the Alfvén transit time.

Acceleration to figh energies of a small fraction of the particles in a plasma is familiar in space physics, astrophysics and fusion physics. Two examples are the production of energetic particles in solar flares and in planetary magnetospheres during magnetic substorms. Giovanelli ${ }^{1}$, Dungey ${ }^{2}$, Sweet ${ }^{3}$, Parker ${ }^{4}$ and others suggested that particles can be accelerated to high energies by strong electric fields which might arise near X-type magnetic neutral points. The question of whether strong electric fields exist near such neutral points has led to the study of magnetohydrodynamic (MHD) reconnection. Conclusions about the intensity of the self-consistent electric field near the X-point and therefore, the "rate of reconnection" vary considerably in reconnection models ${ }^{3}$. The collisional tearing instability ${ }^{6}$; Parker-Sweet mechanism ${ }^{3}$, 7 and Petschek's model ${ }^{8}$ predict values of reconnection rates which decrease at high conductivity.

The effects of turbulence in analytical and computational models have often been excluded by assuming that the background magnetic field is smooth initially and that perturbations are symmetric andor infinitesimal. There is indication ${ }^{9}, 10,11$ that finite-amplitude fluctuations can lead to turbulence in x-point dynamics, thereby elevating reconnection rates. Consequently, turbulent reconnection might maintain strong X-point electric fields (and the possibility of significant particle acceleration) at high conductivity.

The question of whether a subpopulation of plasma particles might be effectively accelerated by the reconection zone electric field has also been extensively studied ${ }^{12^{-17}}$. A typical approach has been to calculate the trajectories of "test-particles" in model MHD magnetic and electric fields. The electric field has usually been included parametrically, but there has
been at least one study ${ }^{18}$ of test particle orbits in the dynamic electric fields of a symmetric, forced non-turbulent MHD simulation. It generally has been found that test particles do not spend very much time near X -type neutral points, but can easily be trapped near 0-type neutral points ${ }^{12,14}$. This is a crucial point in the assessment of the importance of reconnection as a particle accelerator. In nonsteady incompressible simulations, strong accelerating eleetric fields do not appear near 0 -points which are the centers about which reconnected flux gathers after emerging from the reconnection zone. A long residence time near this type of 0-point is unlikely to produce significant particle acceleration. The short residence times of particles near the X-point region has been viewed as a limitation on the effetency of the X-point acceleration mechanism.

In thrs letter; we describe an analysis of particle orbit tracing in MFD fields which evolve and reconnect in the presence of finite amplitude fluctuations. We find that turbulent fluctuations appearing near the recomection zone can trap test particles in the strong electric field region for long enough times to produce significant acceleration. Consequently the turbulent X-point mechanism is an efficient accelerator.

The fields in which the test particles propagate are produced by a spectral-method, incompressible MHD simulation technique that has been described in detail elsewhere ${ }^{9,10}$. The magnetic field \vec{B} and fluid velocity field \vec{v} lie in the x, y plane and vary in that plane, all quantities being independent of the third coordinate, z. Thus, the electric current density, magnetic vector potential, fluid vorticity and MHD electric field each have only single components in the z direction, designated J, a, ω and E respectively. The familiar dimensionless units ${ }^{19,9}$ include an arbitrary length scale L, a characteristic Alfvén speed, V_{a}, and transit time of unit
distance, $\tau=I / V_{a}$
A. 128 ${ }^{2}$ spectral. Iruncation and:an explicit.timestep of $1 / 512$ were used. The Tuns; lasted 10 :Alfven:. times. The dimensionless...fluid and :magnetic Reynolds numbers (reciprocals of the dimensionless. viscosity, v and resistivity, μ) were each equal to 1000 in these simulations. The values of $\omega(\vec{k}, t)$ and $a(\vec{k}, t)$ for all values of $2-d$ wavevectors retained were stored every $\Delta T=10 / 512$ Alfven times. The reconnection process is modeled as an unforced, turbulent initial value problem..in which at $=0$ magnetic..energy resides almost entirely In a small. number of Fourier modes that describe two . oppositely.directed neutrai sheets....Turbulent reconnection is triggered by adding at' $t=0$ a small but finite level of broad-band randour phased "noise" perturbations.
\therefore Test particles were \cdots introduced into the simulation fields"at $\because=0$. Their position \vec{X} and three dimensional velocity \vec{U} were then advanced in time and space according. to $\mathrm{d} \overrightarrow{\mathrm{X}} / \mathrm{dt}=\overrightarrow{\mathrm{U}}$. and

$$
\begin{equation*}
\mathrm{d} \overrightarrow{\mathrm{U}} / \mathrm{dt}=\alpha(\overrightarrow{\mathrm{U}} \times \overrightarrow{\mathrm{B}}+\overrightarrow{\mathrm{E}}) \tag{1}
\end{equation*}
$$

where $\alpha=\Omega \tau, \quad \Omega=\mathrm{ZeB} / \mathrm{me}$ is the nominal test particlegyrofrequency, and $\vec{E}=$ $-\vec{v} \times \vec{B}+\mu \vec{J}$ is the MHD electric field.

Eq. (1), written with particle velocity in units of Alfvén speed, emphasizes the role of the constant α in coupling the natural units of particle motion to those of MHD turbulence. Particle acceleration is entirely due to the z-component of electric field. The implementation of the particle-pushing algorithm uses the fact that the z-component of Eq. (1) implies

$$
\begin{equation*}
\mathrm{U}_{\mathrm{z}}+\alpha_{\mathrm{a}}=\text { constant } \tag{2}
\end{equation*}
$$

This is an expression of the constancy of the z-component of canonical momentum and allows the effect of the electric field to be incorporated implicitly through the space and time dependence of the vector potential. To ensure that the particles sample the fields in the detail afforded by the high resolution MHD simulation, we employed a 2-d cubic spline interpolation procedure to calculate field values at particle positions. The fields were also linearly interpolated in time, hence the electric field is constant between independent snapshots of the MHD simulation. Time integration of the x and y components of $E q .(1)$ was done by a fourth-order Runge-Kutta method. The timesteps were chosen to be much less than the time between frames of the MHD fields to give good resolution of the particle gyromotion.

The first run we describe consists of 500 particles randomly distributed in space, each moving with the unit Alfvén speed at 45° pitch angle, but with randomly chosen gyrophase. The value of α is 643 , so that the characteristic gyroradius is much less than the unit cell of the MHD simulation. Fig. 1 shows magnetic field line plots in the area around the lower of the two current sheets at several times. New magnetic islands are appearing due to the reconnection process. Furthermore, since the same field lines are plotted in each frame (same values of $a(x, y)$), it is clear that magnetic flux is being removed from the strong field regions above and below the current sheet.

Figure 1 also shows the position of three of the test particles superimposed on the field lines at each time. These particles were selected because of their significant energy gain, and because their trajectories were typical of particles gaining energy along either the upper or lower sheets.

Throughout the run, most of the particles are undergoing relatively unperturbed gyromotion in . the strong magnetic field regions away from the reconnection zones near the upper and lower x-points. Whowever, Figure 2 shows that the particle energy distribution changes considerably during the run in that a small number of particles, including the three in Fig. 1, are accelerated to thousands of times their initial energy. It is apparent in Fig. 1 that the particles were trapped within small "magnetic bubbles". in the reconnection zone which are turbulent fluctuations of the magnetic field.

Detailed : analysis of the MHD simulation ${ }^{11}$. has suggested that these fluctuations are characteristic of reconnection triggered by finite amplitude turbulence. ...The bubbles produce multiple X-points within the reconnection $20 n e$ which remains centered about a single filament of electric current density. Once formed, these bubbles move outward from the reconnection zone with the exhaust velocity of the fluid jets ($=0.85 \nabla_{a}$).

The trapped particles move with the bubbles, cross the strong electric field region where they are accelerated, and enter the reconnected island region around an 0 -point. Within the large island the particles experience less acceleration because the reconnection electric field is weak there. Some particles lose energy in the 0-point region, presumably due to encounters with field lines which recede sas the reconnected island grows. This behavior is illustrated infig. 3 by the time history of the kinetic energy of the particles identified in Figure 1.

The physics of the particle trapping and acceleration is easily understood. Each small magnetic bubble is a trapping center for test particles. In this simulation, particles in the reconnection zone experience a fluctuating electric field with average magnitude of $\varepsilon=0.1$ (in units of $B_{o} V_{a}$). Particles trapped in a bubble are entrained in the high-E region for about
one Alfvén transit time.

From the conservation law (Eq. 2) it follows that if a particle spends a unit time in a reconnection electric field, ε, its velocity will change by $\Delta V_{z}=\varepsilon \alpha$. With $\alpha=643$, the upper limit to the velocity is about 64. Note that in Fig. 3, particle no. 382 reaches a speed of about 60. This is the highest speed that we have found for particles in this simulation. A preliminary test of this scaling was performed using a second set of 500 particles with $\alpha=321.5$. The highest speed attained was about 30 .

Assuming the validity of this scaling and neglecting the initial speed of the test particles, the maximum kinetic energy is $\varepsilon_{\max }=m\left(\Delta V_{z}\right)^{2} / 2=\varepsilon^{2} \alpha^{2} m / 2$ where ε is in units of $V_{a}{ }^{2}$. This is equivalent to

$$
\begin{equation*}
\varepsilon_{\max }=0.5 \mathrm{~m} V_{a}^{2}\left[\varepsilon\left(L_{p} / c\right)\left(Z / Z_{0}\right)\left(m_{0} / m\right)\right]^{2} \tag{3}
\end{equation*}
$$

where ω_{p}, Z_{o} and m_{o} are the plasma frequency, charge state and ion mass of the background plasma. Eq. (3) assumes that particle motion in the z-direction is unbounded. If the acceleration acts only until the particles have traveled a distance L in the z-direction, then the estimated duration of the acceleration process becomes $\tau \star=\downarrow(2 /(\varepsilon \alpha))$, and the maximum energy is

$$
\varepsilon_{\max }=\mathrm{mV}_{\mathrm{a}}^{2}\left[\varepsilon\left(\mathrm{~L} \omega_{\mathrm{p}} / \mathrm{c}\right)\left(\mathrm{Z} / Z_{0}\right)\left(\mathrm{m}_{0} / \mathrm{m}\right)\right]
$$

Note that this is proportional to the charge of the test particles, but independent of their mass.

These simulations indicate that turbulent fluctuations in a reconnecting magnetofluid can trap test particles in the strong electric field region and accelerate them to speeds of order $\varepsilon \Omega \tau V_{a}$. In a future publication, several
issues will be studied including the range of α for which trapping occurs, the dependence of the magnitude of the acceleration on Reynolds number and initial:particle speeds, and the influence of a uniform DC magnetic field in the z-direction.

We thank S. L. Lamkin for assisting in the preparation of the MHD field data. Helpful discussions with F. C. Jones, K. Papadopoulos, and B. U. Ö.
$\therefore:$ Somerup are gratefully acknowledged. This work was supported, in part, by a .NASA Solar Terrestrial...Theory Program grant .to the Goddard. Space Flight F. Center, \because and:NASA Grant, NSG 7416 to The. College of William and Mary. WHM
\rightarrow acknowledges .. the . Laboratory .. for..Extraterrestrial Physics, Goddard Space Flight, Center, for support during the course of this research.

References

${ }^{2}$ R. G. Giovanelli; Mon. Not.: Roy. Astron. Soc., 107, 338 (1947).
${ }^{2}$ J. W. Dungey, Cosmic Electrodynamics (Cambridge Univ. Press, 1958).
${ }^{3}$ P. Sweet, in Electromagnetic Phenomena in Cosmical Physics, edited by B. Lehnert (Cambridge Univ. Press, 1958). P. Sweet, Nuovo Cimento Suppl., VIII, Ser. X, 188 (1958).
${ }^{4}$ E. N. Parker, Astrophys. J. Suppl. Ser., B, 177 (1963).
${ }^{5}$ E. N: Parker, Cosmical Magnetic Fields (Clarendon Press, Oxford; 1979).
${ }^{5}$ H. Furth, J. Killeen, and M. Rosenbluth, Phys. Fluids, 6, 459..(1963).
${ }^{7}$ E. N. Parker, J. Geophys. Res., 62, 509 (1957).
${ }^{\theta}$ H. Petschek, in AAS-NASA Symposium on the Physics of Solar Flares, NASA SP-50, 425 (1964).
${ }^{9}$ W. H. Matthaeus and D. C. Montgomery, J. Plasma Phys., 25, 11 (1981).
${ }^{1}{ }^{0}$ W. . H. Matthaeus, Geophys. Res. Lett., 9, 660 (1982).
${ }^{11}$ W. H. Matthaeus and S. L. Lamkin, Phys. Fluids, submitted (1984).
B. U. Ö. Sonnerup, J. Geophys. Res., 76, 8211 (1971).
${ }^{13}$ T. W. Speiser, J. Geophys. Res., 72, 3919 (1967).
1^{4} D. P. Stern, J. Geophys.-Res., 84, 63 (1979).
${ }^{15} \mathrm{~J}$. S. Wagner, J. Rokkn, and S.-I. Akasofu, J. Geophys. Res., 84, 891 (1979).
${ }^{16}$ V. M. Vasyliunas, J. Geophys. Res., 85, 4616 (1980).
${ }^{17}$ M. Rusbridge, Plaṣma Phys., 13, 977 (1971). M. Rusbridge, Plasma Phys., 19, 1087 (1977).
${ }^{18}$ T. Sato, H. Matsumoto and K. Nagai, J. Geophys. Res., 87, 6089 (1982).
${ }^{19}$ D. Fyfe and D. C. Montgomery, J. Plasma Phys., 16, 181 (1976).

Figure Captions

Figure 1. Magnetic field line plots in the area of the lower current sheet at several times. The positions of three particles are indicated by the symbols: the triangle is particle number 382, the circle is particle 358, and the square is particle 281. The contours label the same vector potential values in each panel.

Figure 2. Particle energy distribution at $t=9$, indicating that most particles have gained little energy; but a small high energy population has been formed.

Figure 3. The time history of the kinetic energy of particles $382,358,281$ (cf. Figure 1).

Figure 1

KINETIC ENERGY

TIME

Figure 3

1. Report No. TM 86121	2. Government Accession No.		3. Recipient's Catalog No.	
4. Title and Subtitle Particle Acceleration by Turbulent Magnetiohydrodynamic Reconnection			$\begin{array}{\|c} \text { 5. Report Date } \\ \text { June } 1984 \\ \hline \end{array}$	
			6. Performing Organization Code	
7. Author(s) W. H. Matthaeus, J. J. Ambrosiano and M. L. Goldstein			8. Performing Organization Report No.	
9. Performing Organization Name and Address NASA/GSFC Laboratory for Extraterrestrial Physics Interplanetary Physics Branch, Code 692 Greenbe1t, MD 20771			10. Work Unit No.	
			11. Contract or Grant No.	
12. Sponsoring Agency Name and Address			13. Type of Report and Period Covered Technical Memorandum	
			14. Sponsoring Agency Code	
15. Supplementary Notes				
16. Abstract Test particles in a two dimensional, turbulent MHD simulation are found to undergo significant acceleration.: The magnetic field configuration is a periodic sheet pinch which undergoes reconnection. The test particles are trapped in the reconnection region for times of order an Alfvén transit time in the large electric fields that characterize the turbulent reconnection process at the relatively large magnetic Reynolds number used in the simulation. The maximum speed attained by these particles is consistent with an analytic estimate which depends on the reconnection electric field, the Alfvén speed, and the ratio of Larmor period to the Alfvén transit time.				
17. Key Words (Selected by Author(s)) Magnetic reconnection, turbulence, acceleration		18. Distribution Statement		
19. Security Classif. (of this report) U	20. Security Classif. (of this page) U		$\begin{gathered} \text { 21. No. of Pages } \\ 15 \end{gathered}$	22. Price*

