1,175 research outputs found

    Optimal Error Estimates for the hp–Version Interior Penalty Discontinuous Galerkin Finite Element Method

    Get PDF
    We consider the hp-version interior penalty discontinuous Galerkin finite element method (hp-DGFEM) for second-order linear reaction-diffusion equations. To the best of our knowledge, the sharpest known error bounds for the hp-DGFEM are due to Riviere, Wheeler and Girault [9] and due to Houston, Schwab and Süli [6] which are optimal with respect to the meshsize h but suboptimal with respect to the polynomial degree p by half an order of p. We present improved error bounds in the energy norm, by introducing a new function space framework. More specifically, assuming that the solutions belong element-wise to an augmented Sobolev space, we deduce hp-optimal error bounds

    A note on the design of hp-version interior penalty discontinuous Galerkin finite element methods for degenerate problems

    Get PDF
    We consider a variant of the hp-version interior penalty discontinuous Galerkin finite element method (IP-DGFEM) for second order problems of degenerate type. We do not assume uniform ellipticity of the diffusion tensor. Moreover, diffusion tensors or arbitrary form are covered in the theory presented. A new, refined recipe for the choice of the discontinuity-penalisation parameter (that is present in the formlation of the IP-DGFEM) is given. Making use of the recently introduced augmented Sobolev space framework, we prove an hp-optimal error bound in the energy norm and an h-optimal and slightly p-suboptimal (by only half an order of p) bound in the L2 norm, provided that the solution belongs to an augmented Sobolev space

    Simulating Flaring Events in Complex Active Regions Driven by Observed Magnetograms

    Full text link
    We interpret solar flares as events originating from active regions that have reached the Self Organized Critical state, by using a refined Cellular Automaton model with initial conditions derived from observations. Aims: We investigate whether the system, with its imposed physical elements,reaches a Self Organized Critical state and whether well-known statistical properties of flares, such as scaling laws observed in the distribution functions of characteristic parameters, are reproduced after this state has been reached. Results: Our results show that Self Organized Criticality is indeed reached when applying specific loading and relaxation rules. Power law indices obtained from the distribution functions of the modeled flaring events are in good agreement with observations. Single power laws (peak and total flare energy) as well as power laws with exponential cutoff and double power laws (flare duration) are obtained. The results are also compared with observational X-ray data from GOES satellite for our active-region sample. Conclusions: We conclude that well-known statistical properties of flares are reproduced after the system has reached Self Organized Criticality. A significant enhancement of our refined Cellular Automaton model is that it commences the simulation from observed vector magnetograms, thus facilitating energy calculation in physical units. The model described in this study remains consistent with fundamental physical requirements, and imposes physically meaningful driving and redistribution rules.Comment: 14 pages; 12 figures; 6 tables - A&A, in pres

    hp-DGFEM on Shape-Irregular Meshes: Reaction-Diffusion Problems

    Get PDF
    We consider the hp-version of the discontinuous Galerkin finite element method (DGFEM) for second-order elliptic reaction-diffusion equations with mixed Dirichlet and Neumann boundary conditions. For simplicity of the presentation, we only consider boundary-value problems defined on an axiparallel polygonal domain whose solutions are approximated on subdivisions consisting of axiparallel elements. Our main concern is the generalisation of the error analysis of the hp-DGFEM for the case when shape-irregular (anisotropic) meshes and anisotropic polynomial degrees for the element basis functions are used. We shall present a general framework for deriving error bounds for the approximation error and we shall consider two important special cases. In the first of these we derive an error bound that is simultaneously optimal in h and p, for shape-regular elements and isotropic polynomial degrees, provided that the solution belongs to a certain anisotropic Sobolev space. The second result deals with the case where we have a uniform polynomial degree in every space direction and a shape-irregular mesh. Again we derive an error bound that is optimal both in h and in p. For element-wise analytic solutions the method exhibits exponential rates of convergence under p-refinement, in both cases considered. Finally, numerical experiments using shape-regular and shape-irregular elements are presented

    Adaptive discontinuous Galerkin approximations to fourth order parabolic problems

    Full text link
    An adaptive algorithm, based on residual type a posteriori indicators of errors measured in L(L2)L^{\infty}(L^2) and L2(L2)L^2(L^2) norms, for a numerical scheme consisting of implicit Euler method in time and discontinuous Galerkin method in space for linear parabolic fourth order problems is presented. The a posteriori analysis is performed for convex domains in two and three space dimensions for local spatial polynomial degrees r2r\ge 2. The a posteriori estimates are then used within an adaptive algorithm, highlighting their relevance in practical computations, which results into substantial reduction of computational effort
    corecore