327 research outputs found
Re-theorising mobility and the formation of culture and language among the Corded Ware Culture in Europe
Descriptive and Comparative Linguistic
World-wide distributions of lactase persistence alleles and the complex effects of recombination and selection
The genetic trait of lactase persistence (LP) is associated with at least five independent functional single nucleotide variants in a regulatory region about 14 kb upstream of the lactase gene [-13910*T (rs4988235), -13907*G (rs41525747), -13915*G (rs41380347), -14009*G (rs869051967) and -14010*C (rs145946881)]. These alleles have been inferred to have spread recently and present-day frequencies have been attributed to positive selection for the ability of adult humans to digest lactose without risk of symptoms of lactose intolerance. One of the inferential approaches used to estimate the level of past selection has been to determine the extent of haplotype homozygosity (EHH) of the sequence surrounding the SNP of interest. We report here new data on the frequencies of the known LP alleles in the 'Old World' and their haplotype lineages. We examine and confirm EHH of each of the LP alleles in relation to their distinct lineages, but also show marked EHH for one of the older haplotypes that does not carry any of the five LP alleles. The region of EHH of this (B) haplotype exactly coincides with a region of suppressed recombination that is detectable in families as well as in population data, and the results show how such suppression may have exaggerated haplotype-based measures of past selection
Microsatellite discovery in an insular amphibian (Grandisonia alternans) with comments on cross-species utility and the accuracy of locus identification from unassembled Illumina data
The Seychelles archipelago is unique among isolated oceanic islands because it features an endemic radiation of caecilian amphibians (Gymnophiona). In order to develop population genetics resources for this system, we identified microsatellite loci using unassembled Illumina MiSeq data generated from a genomic library of Grandisonia alternans, a species that occurs on multiple islands in the archipelago. Applying a recently described method (PALFINDER) we identified 8001 microsatellite loci that were potentially informative for population genetics analyses. Of these markers, we screened 60 loci using five individuals, directly sequenced several amplicons to confirm their identity, and then used eight loci to score allele sizes in 64 G. alternans individuals originating from five islands. A number of these individuals were sampled using non-lethal methods, demonstrating the efficacy of non-destructive molecular sampling in amphibian research. Although two loci satisfied our criteria as diploid, neutrally evolving loci with the statistical power to detect population structure, our success in identifying reliable loci was very low. Additionally, we discovered some issues with primer redundancy and differences between Illumina and Sanger sequences that suggest some Illumina-inferred loci are invalid. We investigated cross-species utility for eight loci and found most could be successfully amplified, sequenced and aligned across other species and genera of caecilians from the Seychelles. Thus, our study in part supported the validity of using PALFINDER with unassembled reads for microsatellite discovery within and across species, but importantly identified major limitations to applying this approach to small datasets (ca. 1 million reads) and loci with small tandem repeat sizes
Approaching sheep herds origins and the emergence of the wool economy in continental Europe during the Bronze Age
In recent years, extensive archaeological studies have provided uswith new knowledge on wool and woollen textile production incontinental Europe during the Bronze Age. Concentrations of large numbers of textile tools, and of zooarchaeological evidencesuggesting intense sheepherding, hint at specialized centres of wool production during the Bronze Age. The aimof this paper is todiscuss whether engagement with this economic activity was facilitated by the introduction of new foreign sheep types, possiblyfrom the Eastern Mediterranean, where well-established wool economies existed, or by using local sheep, or a mixture of localand non-local types. A small-scale genetic pilot study, presented in this paper, primarily aimed at testing the DNA preservation,and thus the genomic potential in Bronze Age sheep remains provides evidence of both mitochondrial haplogroups A and Bamong Bronze Age sheep in Hungary. This result could hint at sheep herds with mixed origin but further in-depth studies arenecessary to address this.We aim to promote scholarly interest in the issue and propose new directions for research on this topic
Identifying conservation units after large-scale land clearing: a spatio-temporal molecular survey of endangered white-tailed black cockatoos (Calyptorhynchus spp.)
Aim: We examined how the threatened and endemic white-tailed black cockatoos of Western Australia have responded genetically to recent and comprehensive habitat loss with the ultimate aim of identifying units for conservation. We assessed the population structure, connectivity and genetic diversity at spatial and temporal scales for Calyptorhynchus baudinii and C. latirostris, which have undergone dramatic population declines. Genetic comparisons of pre- and post-population decline were carried out by including historical samples dating back to 1920. We examined samples collected from across 700 km of their distribution and sampled approximately 1% of the current population census size to produce significant insights into the population genetics of white-tailed black cockatoos and generate genetic information crucial for conservation management. Location: Southwest corner of Western Australia. Methods: Six hundred and eighty-four cockatoo samples were collected from 1920 to 2010 and profiled with 19 microsatellites to identify spatial population structure and loss of genetic diversity.Results: The temporal and spatial microsatellite data illustrated that the geographically defined genetic structuring in white-tailed black cockatoos is likely to represent a recent phenomenon. We identified: (1) spatial population substructure east and west of extensively cleared habitat (>95,800 km2), but the historical samples clustered with the current western population, regardless of origin, (2) a regional loss of allelic diversity over 3–4 generations for the current eastern population, (3) a lack of a genetic signal of the recent population decline, but perhaps a mid-Holocene population collapse and lastly, (4) limited genetic differentiation between the two currently recognized white-tailed black-cockatoo species suggests a review of taxonomy and/or management units should be undertaken. Main conclusion: Based on extensive spatio-temporal sampling, we have demonstrated that recent anthropogenic habitat modifications have affected the genetic structure of a long-lived and highly mobile species. Our results have identified areas of high conservation value and the importance of maintaining native vegetation migration corridors
No signs of inbreeding despite long-term isolation and habitat fragmentation in the critically endangered Montseny brook newt (Calotriton arnoldi)
Endemic species with restricted geographic ranges potentially suffer the highest risk of extinction. If these species are further fragmented into genetically isolated subpopulations, the risk of extinction is elevated. Habitat fragmentation is generally considered to have negative effects on species survival, despite some evidence for neutral or even positive effects. Typically, non-negative effects are ignored by conservation biology. The Montseny brook newt (Calotriton arnoldi) has one of the smallest distribution ranges of any European amphibian (8 km2) and is considered critically endangered by the International Union for Conservation of Nature. Here we apply molecular markers to analyze its population structure and find that habitat fragmentation owing to a natural barrier has resulted in strong genetic division of populations into two sectors, with no detectable migration between sites. Although effective population size estimates suggest low values for all populations, we found low levels of inbreeding and relatedness between individuals within populations. Moreover, C. arnoldi displays similar levels of genetic diversity to its sister species Calotriton asper, from which it separated around 1.5 million years ago and which has a much larger distribution range. Our extensive study shows that natural habitat fragmentation does not result in negative genetic effects, such as the loss of genetic diversity and inbreeding on an evolutionary timescale. We hypothesize that species in such conditions may evolve strategies (for example, special mating preferences) to mitigate the effects of small population sizes. However, it should be stressed that the influence of natural habitat fragmentation on an evolutionary timescale should not be conflated with anthropogenic habitat loss or degradation when considering conservation strategies
Chemical analysis of pottery demonstrates prehistoric origin for high-altitude alpine dairying
The European high Alps are internationally renowned for their dairy produce, which are of huge cultural and economic significance to the region. Although the recent history of alpine dairying has been well studied, virtually nothing is known regarding the origins of this practice. This is due to poor preservation of high altitude archaeological sites and the ephemeral nature of transhumance economic practices. Archaeologists have suggested that stone structures that appear around 3,000 years ago are associated with more intense seasonal occupation of the high Alps and perhaps the establishment of new economic strategies. Here, we report on organic residue analysis of small fragments of pottery sherds that are occasionally preserved both at these sites and earlier prehistoric rock-shelters. Based mainly on isotopic criteria, dairy lipids could only be identified on ceramics from the stone structures, which date to the Iron Age (ca. 3,000 - 2,500 BP), providing the earliest evidence of this practice in the high Alps. Dairy production in such a marginal environment implies a high degree of risk even by today’s standards. We postulate that this practice was driven by population increase and climate deterioration that put pressure on lowland agropastoral systems and the establishment of more extensive trade networks, leading to greater demand for highly nutritious and transportable dairy products
Tracing the dynamic life story of a Bronze Age Female
YesAncient human mobility at the individual level is conventionally studied by the diverse application of suitable techniques (e.g. aDNA, radiogenic strontium isotopes, as well as oxygen and lead isotopes) to either hard and/or soft tissues. However, the limited preservation of coexisting hard and soft human tissues hampers the possibilities of investigating high-resolution diachronic mobility periods in the life of a single individual. Here, we present the results of a multidisciplinary study of an exceptionally well preserved circa 3.400-year old Danish Bronze Age female find, known as the Egtved Girl. We applied biomolecular, biochemical and geochemical analyses to reconstruct her mobility and diet. We demonstrate that she originated from a place outside present day Denmark (the island of Bornholm excluded), and that she travelled back and forth over large distances during the final months of her life, while consuming a terrestrial diet with intervals of reduced protein intake. We also provide evidence that all her garments were made of non-locally produced wool. Our study advocates the huge potential of combining biomolecular and biogeochemical provenance tracer analyses to hard and soft tissues of a single ancient individual for the reconstruction of high-resolution human mobility.The Danish National Research Foundation; The Carlsberg Foundation, L'Oreal Denmark-UNESCO; The ERC agreement no. 26944
Profiling the Dead: Generating Microsatellite Data from Fossil Bones of Extinct Megafauna—Protocols, Problems, and Prospects
We present the first set of microsatellite markers developed exclusively for an extinct taxon. Microsatellite data have been analysed in thousands of genetic studies on extant species but the technology can be problematic when applied to low copy number (LCN) DNA. It is therefore rarely used on substrates more than a few decades old. Now, with the primers and protocols presented here, microsatellite markers are available to study the extinct New Zealand moa (Aves: Dinornithiformes) and, as with single nucleotide polymorphism (SNP) technology, the markers represent a means bywhich the field of ancient DNA can (preservation allowing) move on from its reliance on mitochondrial DNA. Candidate markers were identified using high throughput sequencing technology (GS-FLX) on DNA extracted from fossil moa bone and eggshell. From the ‘shotgun’ reads, .60 primer pairs were designed and tested on DNA from bones of the South Island giant moa (Dinornis robustus). Six polymorphic loci were characterised and used to assess measures of genetic diversity. Because of low template numbers, typical of ancient DNA, allelic dropout was observed in 36–70% of the PCR reactions at each microsatellite marker. However, a comprehensive survey of allelic dropout, combined with supporting quantitative PCR data, allowed us to establish a set of criteria that maximised data fidelity. Finally, we demonstrated the viability of the primers and the protocols, by compiling a full Dinornis microsatellite dataset representing fossils of c. 600–5000 years of age. A multi-locus genotype was obtained from 74 individuals (84% success rate), and the data showed no signs of being compromised by allelic dropout. The methodology presented here provides a framework by which to generate and evaluate microsatellite data from samples of much greater antiquity than attempted before, and opens new opportunities for ancient DNA research
Genetic diversity loss in a biodiversity hotspot: ancient DNA quantifies genetic decline and former connectivity in a critically endangered marsupial
The extent of genetic diversity loss and former connectivity between fragmented populations are often unknown factors when studying endangered species. While genetic techniques are commonly applied in extant populations to assess temporal and spatial demographic changes, it is no substitute for directly measuring past diversity using ancient DNA (aDNA). We analysed both mitochondrial DNA (mtDNA) and nuclear microsatellite loci from 64 historical fossil and skin samples of the critically endangered Western Australian woylie (Bettongia penicillata ogilbyi), and compared them with 231 (n = 152 for mtDNA) modern samples. In modern woylie populations 15 mitochondrial control region (CR) haplotypes were identified. Interestingly, mtDNA CR data from only 29 historical samples demonstrated 15 previously unknown haplotypes and detected an extinct divergent clade. Through modelling, we estimated the loss of CR mtDNA diversity to be between 46% and 91% and estimated this to have occurred in the past 2000-4000 years in association with a dramatic population decline. In addition, we obtained near-complete 11-loci microsatellite profiles from 21 historical samples. In agreement with the mtDNA data, a number of 'new' microsatellite alleles was only detected in the historical populations despite extensive modern sampling, indicating a nuclear genetic diversity loss >20%. Calculations of genetic diversity (heterozygosity and allelic rarefaction) showed that these were significantly higher in the past and that there was a high degree of gene flow across the woylie's historical range. These findings have an immediate impact on how the extant populations are managed and we recommend the implementation of an assisted migration programme to prevent further loss of genetic diversity. Our study demonstrates the value of integrating aDNA data into current-day conservation strategies
- …
