37 research outputs found

    Mob1: defining cell polarity for proper cell division

    Get PDF
    Mob1 is a component of both the mitotic exit network and Hippo pathway, being required for cytokinesis, control of cell proliferation and apoptosis. Cell division accuracy is crucial in maintaining cell ploidy and genomic stability and relies on the correct establishment of the cell division axis, which is under the control of the cell's environment and its intrinsic polarity. The ciliate Tetrahymena thermophila possesses a permanent anterior posterior axis, left right asymmetry and divides symmetrically. These unique features of Tetrahymena prompted us to investigate the role of Tetrahymena Mob1. Unexpectedly, we found that Mob1 accumulated in basal bodies at the posterior pole of the cell, and is the first molecular polarity marker so far described in Tetrahymena. In addition, Mob1 depletion caused the abnormal establishment of the cell division plane, providing clear evidence that Mob1 is important for its definition. Furthermore, cytokinesis was arrested and ciliogenesis delayed in Tetrahymena cells depleted of Mob1. This is the first evidence for an involvement of Mob1 in cilia biology. In conclusion, we show that Mob1 is an important cell polarity marker that is crucial for correct division plane placement, for cytokinesis completion and for normal cilia growth rates.Fundacao para a Ciencia e a Tecnologia (FCT) [PTDC/SAU-OBD/105234/2008]; Centro de Quimica e Bioquimica (CQB)info:eu-repo/semantics/publishedVersio

    An In Vivo CRISPR Screening Platform for Prioritizing Therapeutic Targets in AML

    Full text link
    CRISPR-Cas9-based genetic screens have successfully identified cell type-dependent liabilities in cancer, including acute myeloid leukemia (AML), a devastating hematologic malignancy with poor overall survival. Because most of these screens have been performed in vitro using established cell lines, evaluating the physiologic relevance of these targets is critical. We have established a CRISPR screening approach using orthotopic xenograft models to validate and prioritize AML-enriched dependencies in vivo, including in CRISPR-competent AML patient-derived xenograft (PDX) models tractable for genome editing. Our integrated pipeline has revealed several targets with translational value, including SLC5A3 as a metabolic vulnerability for AML addicted to exogenous myo-inositol and MARCH5 as a critical guardian to prevent apoptosis in AML. MARCH5 repression enhanced the efficacy of BCL2 inhibitors such as venetoclax, further highlighting the clinical potential of targeting MARCH5 in AML. Our study provides a valuable strategy for discovery and prioritization of new candidate AML therapeutic targets. SIGNIFICANCE: There is an unmet need to improve the clinical outcome of AML. We developed an integrated in vivo screening approach to prioritize and validate AML dependencies with high translational potential. We identified SLC5A3 as a metabolic vulnerability and MARCH5 as a critical apoptosis regulator in AML, both of which represent novel therapeutic opportunities.This article is highlighted in the In This Issue feature, p. 275

    Understanding the seasonal and reproductive biology of olive fruit fly is critical to its management

    Full text link
    The olive fruit fly was first detected in Los Angeles in 1998 and in all the olive-growing regions of California soon after. Following its initial detection, UC researchers and Cooperative Extension farm advisors, county agricultural commissioners and the California Department of Food and Agriculture Pest Detection and Emergency Project established a statewide monitoring program to determine the extent of the olive fruit fly’s occurrence, track its seasonal biology and evaluate monitoring tools. Fly populations and infestations can reach high levels throughout California but tend to be lower in the San Joaquin Valley. Trap captures typically exhibit a bimodal distribution with peaks in the spring and fall. Olive infestation is related to fly densities, climate and fruit size. Gravid, mated females vary in density throughout the year but are present at some level year-round. The data is being used to develop models that will better predict when the adults are active and olives are at risk

    Molecular signatures for CCN1, p21 and p27 in progressive mantle cell lymphoma

    Get PDF
    Mantle cell lymphoma (MCL) is a comparatively rare non-Hodgkin’s lymphoma characterised by overexpression of cyclin D1.Many patients present with or progress to advanced stage disease within 3 years. MCL is considered an incurable disease withmedian survival between 3 and 4 years. We have investigated the role(s) of CCN1 (CYR61) and cell cycle regulators inprogressive MCL. We have used the human MCL cell lines REC1 G519 > JVM2 cells by RQ-PCR, depicting a decrease in CCN1expression with disease progression. Investigation of CCN1 isoform expression by western blotting showed that whilst expres-sion of full-length CCN1 was barely altered in the cell lines, expression of truncated forms (18–20 and 28–30 kDa) decreasedwith disease progression. We have then demonstrated that cyclin D1 and cyclin dependent kinase inhibitors (p21CIP1and p27KIP1)are also involved in disease progression. Cyclin D1 was highly expressed in REC1 cells (OD: 1.0), reduced to one fifth in G519cells (OD: 0.2) and not detected by western blotting in JVM2 cells. p27KIP1followed a similar profile of expression as cyclin D1.Conversely, p21CIP1was absent in the REC1 cells and showed increasing expression in G519 and JVM2 cells. Subcellularlocalization detected p21CIP1/p27KIP1primarily within the cytoplasm and absent from the nucleus, consistent with altered roles in treatment resistance. Dysregulation of the CCN1 truncated forms are associated with MCL progression. In conjunction withreduced expression of cyclin D1 and increased expression of p21, this molecular signature may depict aggressive disease andtreatment resistance

    Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign

    Get PDF
    Abstract: In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M ⊙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87’s spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded

    Biological Control of Damping-Off of Alfalfa Seedlings with Bacillus cereus UW85

    No full text
    We explored the potential of biological control of alfalfa (Medicago sativa L.) seedling damping-off caused by Phytophthora megasperma f. sp. medicaginis by screening root-associated bacteria for disease suppression activity in a laboratory bioassay. A total of 700 bacterial strains were isolated from the roots of field-grown alfalfa plants by using Trypticase soy agar. A simple, rapid assay was developed to screen the bacteria for the ability to reduce the mortality of Iroquois alfalfa seedlings that were inoculated with P. megasperma f. sp. medicaginis zoospores. Two-day-old seedlings were planted in culture tubes containing moist vermiculite, and each tube was inoculated with a different bacterial culture. Sufficient P. megasperma f. sp. medicaginis zoospores were added to each tube to result in 100% mortality of control seedlings. Of the 700 bacterial isolates tested, only 1, which was identified as Bacillus cereus and designated UW85, reduced seedling mortality to 0% in the initial screen and in two secondary screens. Both fully sporulated cultures containing predominantly released spores and sterile filtrates of these cultures of UW85 were effective in protecting seedlings from damping-off; filtrates of cultures containing predominantly vegetative cells or endospores inside the parent cell had low biocontrol activity. Cultures grown in two semidefined media had significantly greater biocontrol activities than cultures grown in the complex tryptic soy medium. In a small-scale trial in a field infested with P. megasperma f. sp. medicaginis, coating seeds with UW85 significantly increased the emergence of alfalfa. The results suggest that UW85 may have potential as a biocontrol agent for alfalfa damping-off, thus providing an alternative to current disease control strategies

    A Modified Surface Energy Balance to Estimate Crop Transpiration and Soil Evaporation in Micro-Irrigated Orchards

    No full text
    A surface energy balance model was conceived to estimate crop transpiration and soil evaporation in orchards and vineyards where the floor is partially wetted by micro-irrigation systems. The proposed surface energy balance model for partial wetting (SEB-PW) builds upon previous multiple-layer modelling approaches to estimate the latent, sensible, and soil heat fluxes, while partitioning the total evapotranspiration ( E T ) into dry and wet soil evaporation ( λ E s o i l ) and crop transpiration ( T ). The model estimates the energy balance and flux resistances for the evaporation from dry and wet soil areas below the canopy, evaporation from dry and wet soil areas between plant rows, crop transpiration, and total crop E T . This article describes the model development, sensitivity analysis and a preliminary model evaluation. The evaluation shows that simulated hourly E T values have a good correlation with field measurements conducted with the surface renewal method and micro-lysimeter measurements in a micro-irrigated winegrape vineyard of Northern California for a range of fractional crop canopy cover conditions. Evaluation showed that hourly L E estimates had root mean square error ( R M S E ) of 58.6 W m−2, mean absolute error ( M A E ) of 35.6 W m−2, Nash-Sutcliffe coefficient ( C N S ) of 0.85, and index of agreement ( d a ) of 0.94. Daily soil evaporation ( E s ) estimations had R M S E of 0.30 mm d−1, M A E of 0.24 mm d−1, C N S of 0.87, and d a of 0.94. E s estimation had a coefficient of determination ( r 2 ) of 0.95, when compared with the micro-lysimeter measurements, which showed that E s can reach values from 28% to 46% of the total E T after an irrigation event. The proposed SEB-PW model can be used to estimate the effect and significance of soil evaporation from wet and dry soil areas on the total E T , and to inform water balance studies for optimizing irrigation management. Further evaluation is needed to test the model in other partially wetted orchards and to test the model performance during all growing seasons and for different environmental conditions
    corecore