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Abstract 

Mantle cell lymphoma (MCL) is a comparatively rare non-Hodgkin's lymphoma 

characterised by overexpression of cyclin D1. Many patients present with or progress to 

advanced stage disease within three years. MCL is considered an incurable disease with 

median survival between 3-4 years. We have investigated the role(s) of CCN1 (CYR61) and 

cell cycle regulators in progressive MCL.  

We have used the human MCL cell lines REC1<G519<JVM2 as a model for disease 

aggression. The magnitude of CCN1 expression in human MCL cells is REC1>G519>JVM2 

cells by RQ-PCR, depicting a decrease in CCN1 expression with disease progression. 

Investigation of CCN1 isoform expression by western blotting showed that whilst expression 

of full-length CCN1 was barely altered in the cell lines, expression of truncated forms (18-20 

and 28-30 kDa) decreased with disease progression.  

We have then demonstrated that cyclin D1 and cyclin dependent kinase inhibitors (p21CIP1and 

p27KIP1) are also involved in disease progression. Cyclin D1 was highly expressed in REC1 

cells (OD: 1.0), reduced to one fifth in G519 cells (OD: 0.2) and not detected by western 

blotting in JVM2 cells. p27KIP1 followed a similar profile of expression as cyclin D1. 

Conversely, p21CIP1 was absent in the REC1 cells and showed increasing expression in G519 

and JVM2 cells. Subcellular localization detected p21CIP1/ p27KIP1 primarily within the 

cytoplasm and absent from the nucleus, consistent with altered roles in treatment resistance.  

Dysregulation of the CCN1 truncated forms are associated with MCL progression. In 

conjunction with reduced expression of cyclin D1 and increased expression of p21, this 

molecular signature may depict aggressive disease and treatment resistance.  
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Abbreviations:  

MCL             Mantle cell lymphoma 

NHL             Non Hodgkin's Lymphoma 

CCND1        Cyclin D1 

CDK4 or 6   Cyclin-dependent kinase 4 (CDK4) or cyclin-dependent kinase 6 

pRb              Retinoblastoma protein 

ATM            Ataxia telangiectasia mutated 

CYR61         Cysteine-rich protein 61 

AML            Acute myeloid leukaemia 

SP                 Signal peptide  

IGFBP          Insulin like growth factor binding domain 

VWC            Von Willebrand type C repeat 

TSP-1           Thrombospondin type 1 domain 

CT                Cysteine rich carboxyl terminal 

HSPGs         Heparan sulfate proteoglycans 

BMP            Bone morphogenetic protein 

TGF-β          Transforming growth factor β 

VEGF          Vascular endothelial growth factor 

MMPs         Matrix metalloproteinases 

MM             Multiple myeloma 

OSC            Oesophageal squamous carcinoma 

MEK/ERK  Mitogen-activated protein kinase/extracellular-signal-regulated kinase 

OAFs          Osteoclast activating factors 

OBIs           Osteoblast inhibitors 

IL-6            Interleukin-6 

p21CIP1        (Cdk Interacting Protein 1) 

p27KIP1        (Kinase Inhibitory Protein 1) 

p57KIP2        (Kinase Inhibitory Protein 2) 

TNBC         Triple negative breast carcinoma 

FOXO3a     Forkhead box O3 

PCNA         Proliferating cell nuclear antigen 



OSCC         Oral squamous cell carcinoma 

HCC           Hepatocellular carcinoma 

NLS           Nuclear Localisation Signal 

DCIS          High-grade ductal carcinoma in situ 

NSCLC      Non-small-cell lung cancer  

  



Introduction 

Mantle cell lymphoma (MCL) is a distinct subset of B-cell Non Hodgkinʼs Lymphoma (NHL) 

characterised by overexpression of cyclin D1 as a result of t(11;14)(q13;q32) chromosomal 

translocation (Pérez-Galán, Dreyling & Wiestner, 2011). This translocation juxtaposes the 

cyclin D1 gene on chromosome 11q13 with the immunoglobulin heavy chain gene on 14q32 

which leads to cyclin D1 overexpression and the dysregulation of the cell cycle (O’Connor, 

2007; Zucca & Bertoni, 2013). The clinical course of this disease is highly variable and 

ranges from indolent classic morphology to aggressive variants with blastoid or pleomorphic 

morphology (Royo et al., 2012). MCL is characterised by almost inevitable relapses; many 

patients present with or progress to advanced stage disease within three years due to 

increasing resistance to chemotherapy and other agents (Dreyling et al., 2018; Liu, Zhang & 

Zhong, 2015). MCL is broadly considered an incurable disease with the median survival of 

patients being 3-4 years.  

The REC1, G519, JVM2 cell line model for MCL progression 

In this study, we have used three human MCL cell lines REC1, Granta 519 (G519) and JVM2 

as a model for MCL disease progression. The 2016 revision of World Health Organisation 

classification of lymphoid neoplasms describes the variants of MCL in addition to the 

characteristic Cyclin D1 rearrangent (i) 2 types of clinically indolent forms with either 

Immunoglobulin heavy chain variable region gene (IGHV) unmutated or minimally mutated 

and usually with expression of SOX11 typically involving lymph nodes or extranodal sites, 

(ii) acquisition of additional molecular or cytogenetic abnormalities leading to an aggressive 

blastoid or pleomorphic phenotype and (iii) leukaemic non-nodal MCL develops from IGHV 

mutated and SOX11 negative B cells with usual bone marrow and / or spleen involvement 

where abnormalities in TP53 contributes to enhance aggressive nature (Swerdlow et al., 

2016). REC1 cells display unmutated IGHV with expression of SOX11 (Beà et al., 2013) 

consistent with the classic indolent forms of MCL. GRANTA 519 (G 519) cells display 

blastoid phenotype with SOX11 positivity and amplification of BCL2 gene leading to Bcl2 

overexpression enhancing cell survival associated with the aggressive blastoid variant forms 

(Queirós et al., 2016; Rudolph et al., 2004). JVM2 cells are IGHV unmutated and SOX11 

negative, expressing low levels of cyclinD1 with increased expression of cyclin D2, BCL2 

positive (Tucker et al., 2006) and is considered a blastoid variant (Camps et al., 2006) 

consistent with the aggressive blastoid variant, SOX11 negativity overlaps with the 



aggressive leukaemic non-nodal MCL forms. In addition, the cell lines show increasing 

resistance to lenalidomide in the order of REC1<G519<JVM2 (Zhang et al., 2008) with 

G519 and JVM2 cells also showing increased resistance to Ibrutinib (Balsas et al., 2017). 

REC1 cells are observed as early stage/ indolent MCL showing sensitivity to conventional 

therapy in contrast to G519 and JVM2 cell lines which behave consistently with aggressive 

stages (Nordgren, Hegde & Joshi, 2012; Rauert‐Wunderlich et al., 2016). 

Cyclin D1 and cell cycle progression 

Overexpression of cyclin D1 (CCND1) as a result of t(11;14) chromosomal translocation is 

the hallmark feature of mantle cell lymphoma (Cassaday et al., 2015). Cyclin D1 plays a 

central role in the cell cycle regulation by binding to either cyclin-dependent kinase 4 (CDK4) 

or CDK6. The CCND1-CDK4 or CCND1-CDK6 complex phosphorylates the retinoblastoma 

protein (pRb) which leads to degradation of CCND1 suppressor effect on cell cycle 

progression. This process leads to release of the E2F family of transcription factors and then 

S-phase entry (Cassaday et al., 2015). E2F transcription factor regulates genes that encode 

DNA replication and cell cycle control (Nevins, 2001). In MCL, CCND1 overexpression 

leads to hyperphosphorylate pRb and accumulation of E2F which facilitates the G1/S 

transition and uncontrolled cell proliferation (Cassaday et al., 2015). CCND1 is upregulated 

in almost all MCL patients, however cyclin D1 alone is insufficient to promote MCL. 

Additional oncogenic aberrations have been implicated in the generation of MCL, including, 

c-Myc overexpression, lack of the ataxia telangiectasia mutated (ATM) gene or p53 

dysregulation (Müller et al., 2013). Many secondary genetic events are involved in MCL 

lymphomagenesis and include inactivation of the DNA damage response pathways, 

activation of cell-survival pathways, and suppression of apoptosis. Additional oncogenic 

aberrations are likely to contribute to the development of MCL involving cell proliferation, 

survival, and interactions with microenvironment (Jares, Colomer & Campo, 2012; Müller et 

al., 2013). Mutations within stem cell signalling pathways have been identified that may 

contribute to the pathogenesis of this disease. For example, Notch1 mutations are found in 12% 

of MCL and are associated with poor survival, suppression of the Notch pathway in MCL, 

decreased cell proliferation and increased apoptosis (Kridel et al., 2012). Similarly, 

deregulation of the Wnt canonical pathway was found in MCL by  inactivation of  phospho-

GSK3B suggesting that the Wnt pathway may also contribute to pathogenesis (Gelebart et al., 



2008). Further investigations are required to develop novel, effective therapeutic agents for 

MCL. 

Many studies have indicated that activation or upregulation of cell cycle regulators, p21, p27 

and cyclin D1 are induced through CCN1 signalling (Sawai et al., 2007; Tong et al., 2004; 

Xie et al., 2004), whilst the functional effect or output appears to be cell type specific. In 

2014, (Saglam et al.) have found that induction of cyclin D1 expression in grade ductal 

carcinoma in situ (DCIS) can occur through CCN1 signalling leading to cell cycle 

progression. CCN1 protein promoted cell cycle arrest by increased cell senescence at G0/G1 

phase through activation notch-1-p21 pathway and reduced proliferation of human 

trophoblast cells (Kipkeew et al., 2016). Similarly, CCN1 signalling induced accumulation of 

p53 and p21 driving cell senescence leading to suppression of lung cancer cell proliferation 

(Jim Leu et al., 2013).  

CCN1 (CYR61)  

CCN1, a matricellular protein is involved in stem cell signalling within the haematopoietic 

microenvironment (McCallum & Irvine, 2009; Wells et al., 2015) and has been associated 

with a number of haematological malignancies including acute myeloid leukaemia (AML) 

and multiple myeloma (MM) (Crawford & Irvine, 2016). CCN1, also known as CYR61, 

belongs to CCN family of proteins that are comprised of a signal peptide (SP), Insulin like 

growth factor binding domain (IGFBP), Von Willebrand type C repeat (VWC), a hinge 

region leading to the Thrombospondin type I domain (TSP-1) and cysteine rich carboxyl 

terminal (CT) (Planque & Perbal, 2003).  

CCN1 has been shown to be involved in a diverse array of cellular processes including 

regulation of cell migration, cell adhesion, proliferation, differentiation, apoptosis and 

angiogenesis through direct binding to cell surface receptors such as integrins and heparan 

sulfate proteoglycans (HSPGs) (Jandova et al., 2012; Kireeva et al., 1996). CCN1 is a ligand 

for integrins and acts through direct binding to integrins (via VWC, TSP-1 and CT domains) 

and HSPGs in order to enhance specific functions (Leu et al., 2004). Increasing evidence has 

shown that CCN1 promotes cell adhesion by binding to integrin α6β1-HSPG co-receptors in 

fibroblasts (Todorovicç et al., 2005), αMβ2 in murine macrophages (Bai, Chen & Lau, 2010) 

αDβ2 in macrophage foam cells (Yakubenko, Yadav & Ugarova, 2006), α‖bβ3 in activated 

platelets (Jedsadayanmata et al., 1999). CCN1 may interact with other growth factors such as 



bone morphogenetic proteins (BMP), transforming growth factor β (TGF-β) and vascular 

endothelial growth factor (VEGF) which need more investigation (Lau, 2011).  Recently, it 

has seen that ALK5 suppression prevents TGF-β-induced CCN1 expression in human dermal 

fibroblasts (Thompson, Murphy-Marshman & Leask, 2014). More importantly, CCN1 is a 

transcriptional target of TGF-β and may potentiate an autocrine regulatory mechanism in 

tumourigenesis (Bartholin et al., 2007) and is similarly a target of the Wnt B catenin pathway 

as demonstrated in mesenchymal stem cell differentiation to osteoblasts and hepatocellular 

carcinoma (Si et al., 2006; Li et al., 2012). Constitutive activation of the Wnt Signalling 

pathway was also identified in MCL (Gelebart et al,. 2008), with MCL initiating cells (MCL-

ICs) displaying activation of the Wnt signalling pathway (Samaniego et al., 2014). Targeting 

of Wnt signalling specifically reduces the growth of MCL-ICs (Mathur et al., 2015).           

CCN1 can be observed in cancer as “a double-edged sword” (Lau, 2011) where altered 

CCN1 expression in various cancers may induce or suppress tumour growth (Feng, Wang & 

Ren, 2008; Holloway et al., 2005). CCN1 plays unique roles in different cancers: it is a 

tumour promoter in cancers of the breast (Menendez et al., 2005), prostate (Sun et al., 2008), 

pancreatic (Maity et al., 2014), gastric carcinogenesis (Cheng et al., 2014), ovarian 

carcinoma (Gery et al., 2005), colorectal (Jeong et al., 2014), myeloma (Roodman, 2014) and 

acute myeloid leukaemia (AML) (Niu et al., 2014) due to either overexpression of CCN1 or 

truncated isoforms. Paradoxically, CCN1 is a tumour suppressor in melanoma (Dobroff et al., 

2009), non-small cell lung cancer (Tong et al., 2001) and endometrial adenocarcinoma 

(Chien et al., 2004). Full-length CCN proteins can play an anti-proliferative role, while 

truncated isoforms may induce tumour proliferation (Planque & Perbal, 2003). For example, 

when CCN1 is cleaved by plasmin, this releases a truncated isoform of CCN1 (28kDa) 

supporting endothelial cell migration in breast carcinoma cells (Pendurthi et al., 2005). In 

2013, (Choi et al., 2013) identified truncated CCN1 in the vitreous fluid secretome of 

proliferative diabetic retinopathy patients rather than full-length protein. Furthermore, a 

truncated isoform of CCN1 which includes complete or partial length forms of the two-

modules form IGFBP-VWC is generated by proteolytic cleavage of matrix metalloproteinase 

MMPs (Choi et al., 2013). In addition to proteolysis generating production of a CCN1 

truncated isoform, it may also be generated by alternative mRNA splicing (Perbal, 2009).  

Increasing evidence suggests that CCN1 plays important roles in tumour development, 

including migration, survival, proliferation and metastasis (Sun et al., 2008). In AML, CCN1 

induces tumour survival through activation of the Ras/Raf/MEK/ERK pathway by up 



regulating c-Myc and Bcl-xL and by down regulating Bax (Niu et al., 2014). Similarly, 

CCN1 confers human breast cancer resistance to chemotherapeutic agent-induced apoptosis 

and suppresses apoptosis by activating the integrins/NF-kb/XIAP signalling pathway (Lin et 

al., 2004). CCN1 has been found in sites of bone remodelling, involvement enhancing 

osteoblast differentiation while suppressing osteoclast formation (Si et al., 2006).  

Furthermore, CCN1 has been implicated in Wnt3A-induced osteoblast differentiation of 

mesenchymal stem cells (Si et al., 2006). In vivo, (Johnson et al., 2014) have reported that 

overexpression of CCN1 which produced by mesenchymal cells in bone marrow 

microenvironment of patients with monoclonal gammopathy of undetermined significance 

(MGUS), asymptomatic myeloma (AMM), and multiple myeloma (MM) suppressed tumour 

cell growth and reduced MGUS progression to MM. However, CCN1 may enhance myeloma 

cell viability through supporting survival of the INA-6 myeloma cell line lacking interleukin-

6(IL-6) (Dotterweich et al., 2014).  

Many studies have indicated that activation or upregulation of cell cycle regulators, p21, p27 

and cyclin D1 induce through CCN1 signalling (Sawai et al., 2007; Tong et al., 2004; Xie et 

al., 2004). In 2014, (Saglam et al.) have found that induction of cyclin D1 expression in 

grade ductal carcinoma in situ (DCIS) can occur through CCN1 signalling leading to cell 

cycle progression. However, CCN1 protein promoted cell cycle arrest by increased 

senescence-cell at G0/G1 phase through activation notch-1-p21 pathway and reduced cell 

proliferation of human trophoblast cells (Kipkeew et al., 2016). Moreover, CCN1 signalling 

induced accumulation of p53 and p21 driving senescence of cell leading to suppress lung 

cancer cell proliferation (Jim Leu et al., 2013). 

p21 

p21CIP1 (p21) belongs to the CIP/KIP family of proteins that regulate cell cycle progression.  

The CIP/KIP family comprises three members; p21CIP1 (Cdk Interacting Protein 1), p27KIP1 

(Kinase Inhibitory Protein 1) and p57KIP2 (Kinase Inhibitory Protein 2) (Bretones, Delgado & 

León, 2015) which bind and inhibit most cyclin-CDK complexes. The CIP/KIP family of 

proteins, particularly p21, plays an essential role in cell cycle control, halting the transition 

from G1 phase to S phase (Pérez-Sayáns et al., 2013). Two pathways regulate p21; a p53-

dependent pathway (in response to DNA damage which activates p53 leading to upregulation 

of p21 and repression of cell growth in G1 phase with potential DNA repair or stimulation of 

programmed cell death) and a p53-independent pathway, in which cellular growth factors 



regulate p21 expression (Brennan et al., 2002; Ciccarelli et al., 2005). p21 binds to CCND1-

CDK4 or -CDK6 complex and inhibits the kinase activity of CDKs in response to many 

stimuli leading to regulation G1/S progression, at the restriction point. This process leads to 

repression of phosphorylation of pRb protein which in turn prevents the expression of E2F 

factors and blocks G1/S transition (Zhang & Yan, 2012).  

In addition to negative regulation of the cell cycle, p21 can regulate gene transcription;  p21 

suppresses E2F transcription factor through a pathway independent of CDKs or Rb (Perkins, 

2002). p21 is involved in controlling cellular growth by suppressing of E2F1 transcription 

factor via  Wnt4 expression and Notch 1 activation (Devgan et al., 2005) and p21 stimulates 

NFkb-mediated transcription by activation of p300 and CBP (Perkins, 2002). Studies have 

identified additional roles for p21, in cancer it is a tumour suppressor through cell cycle arrest 

and blocking DNA synthesis by binding to proliferating cell nuclear antigen (PCNA) (Waga 

et al., 1994) or as oncogenic factor, promoting carcinogenesis and tumour development 

(Roninson, 2002). The expression of p21 varies in different cancers, it is down regulated in 

small-cell lung (Komiya et al., 1997), colorectal (Zirbes et al., 2000), cervical (Lu et al., 

1998a), and head and neck cancer (Kapranos et al., 2000) that are associated with tumour 

progression. In contrast, it is upregulated in prostate (Baretton et al., 1999), ovarian 

(Ferrandina et al., 2000), breast, oesophageal squamous cell carcinomas, and in brain 

tumours (Roninson, 2002). The function of p21 depends on subcellular localization which 

may be nuclear, cytoplasmic or mitochondrial. p21 regulates cell proliferation and 

differentiation by localizing in the nucleus (Abbas & Dutta, 2009), whilst p21 enables 

resistance to DNA damage by inhibiting proteins essential for apoptosis by localising to the 

cytoplasm or mitochondria, enhancing tumourigenesis (de Renty, DePamphilis & Ullah, 2014; 

Sohn et al., 2006) 

p27 

In G1 phase of cell cycle, reviewed in (Hirama & Koeffler, 1995) p27 binds to CCNE-CDK2 

complex and inhibits the catalytic activity of CDK2 resulting in cell cycle arrest at the 

restriction point in response to DNA damage or anti-mitogenic signals. As a result, this 

prevents the phosphorylation of pRb which leads to block in the transcription of genes 

required for G1/S progression (Toyoshima & Hunter, 1994). Beyond the restriction point, cell 

cycle proceeds independent of mitogenic signals (Coats et al., 1996). 



 Interestingly, p27KIP1 and p21CIP1 have an important role in promotion of assembly of 

CCND-CDK4/6 complexes (LaBaer et al., 1997). This interaction leads to sequestration of 

p27 in CCND-CDK4 complex which blocks inhibition of the CCNE-CDK2 complex (Perez‐

Roger et al., 1999). Binding of p27KIP1 with CCND-CDK4 complex suppresses the kinase 

activity of CDK4 (Ray et al., 2009). Expression of p27KIP1 is reduced in several types of 

cancer associated with poor prognosis including breast (He et al., 2012), prostate (Roy et al., 

2008), lung and colon cancer (Timmerbeul et al., 2006). In contrast, p27KIP1 is overexpressed 

in hepatocellular carcinoma (HCC) which is associated with longer disease free survival (Qin 

& Ng, 2001). In MCL, Quintanilla-Martinez et al. (2003) suggested overexpression of cyclin 

D1 contributed to a change in p27KIP1 levels leading to inhibition of cellular growth.  

In addition to cell cycle regulation, there is some evidence that p27KIP1 has important roles in 

apoptosis, transcriptional activation, and migration depending on its localization. In the 

nucleus, it has an essential role to inhibit cell growth and is considered as a tumour 

suppressor (Jeannot et al., 2015). Phosphorylation of specific sites on p27KIP1 leads to its 

export into the cytoplasm where it can act as a tumour promotor as reviewed in (Besson, 

Dowdy & Roberts, 2008). Many studies have shown that cytoplasmic p27KIP1 in cancer 

including melanoma (Chen et al., 2011; Denicourt et al., 2007), ovarian carcinoma (Duncan 

et al., 2010), renal cell carcinoma (Kruck et al., 2012), osteosarcoma (Li et al., 2016) and 

acute myelogenous leukaemia (Min et al., 2004) is associated with cell migration, high 

tumour grade and metastasis, poor prognosis and survival. Moreover, cytoplasmic p27KIP1 

contributed to treatment resistance mediated suppression of apoptosis in Her2+ breast cancer 

cells (Zhao et al., 2014).            

This study investigated the expression of CCN1 and cell cycle regulators Cyclin D1, p21 and 

p27 in progressive MCL.   

  



Materials and Methods  

Cell culture 

Human Mantle Cell Lymphoma cell lines REC1, G519 and JVM2 were purchased from the 

Deutsche Sammlung von Mikroorganismen and Zellkulturen (DSMZ-Germany). All cell 

lines were cultured in Roswell Park Memorial Institute (RPMI) 1640 (Gibco) supplemented 

with 10% FBS (Gibco) and were incubated at 37° C in a humidified atmosphere of 5% CO2.  

Cells were passaged twice weekly to maintain log phase. Experiments were conducted within 

10 passages from cell recovery and cells were seeded at 2x105 cells per ml for experimental 

procedures. Cells were counted using a haemocytometer and viability assessed using the 

trypan blue exclusion assay.  

Normal peripheral blood (nPB) samples were obtained from Normal blood donors (n=5) via 

NHS Blood and Transplant Bristol (NHSBT, Bristol, UK) with material transfer agreement 

and approval for use via Plymouth University ethics committee. Lymphocytes were extracted 

using Lymphoprep™ (Axis Shield, UK) using manufacturer’s instructions and cells 

harvested in Trizol® reagent (Fisher Scientific, UK) for RNA analyses.  

Protein extraction and quantification 

Total cell lysates for three cell lines (REC1, G519 and JVM2) were prepared in 

Radioimmune Precipitation Assay buffer (RIPA): Tris 50 mM, NaCl 150 mM, Triton X-100 

1%, Na-Deoxycholate 0.5%, SDS 0.1% supplemented with Complete™ protease inhibitor 

(Roche UK) and stored at -20 °C until required.  

Subcellular Fractions 

Nuclear, mitochondria and cytoplasmic proteins from REC1, G519 and JVM2 cell lines were 

extracted using the Cell Fraction Kit-Standard (Abcam, UK) according to manufacturer 

instructions with the following modifications: reduced cell number to 1x106/ml incubated 

with 500 µl of buffer A (1X) and samples were incubated for 8 minutes to extract clean 

mitochondrial fractions. Buffer A (1X) was prepared using 5 ml 2X buffer A stock, 4900 µl 

dH2O and 100µl PI 100X (Halt Protease Inhibitor Single-Use Cocktail EDTA-Free, 

ThermoScientific). All fractions were stored at -80 °C until required.  



Protein was quantified using the micro BCA™ Assay Kit following the supplier instructions 

(Pierce, ThermoScientific, UK). The subcellular fractions for nuclear, cytoplasmic and 

mitochondrial extracts were run simultaneously on one gel (NuPage 10 well 10% Bis Tris gel 

(Invitrogen, UK)) to enable direct comparison. Experiments were conducted in triplicate 

(n=3).  

Western blotting  

Protein samples (10 µg) were loaded on a 10% NuPAGE® Bis-Tris Gels (Invitrogen UK) 

and transferred onto a PVDF membrane (Millipore, UK). Membranes were blocked with 2.5% 

skimmed milk for 30 minutes. Membranes were then incubated overnight at 4 °C with 

primary antibody (rabbit anti-p21CIP1 (2947S) (1:1000, Cell Signalling Technology), rabbit 

anti-p27KIP1 (3688s) (1:1000, New England Biolabs), mouse cyclin D1 (1:1000, Cell 

Signalling Technology), rabbit anti-CCN1 (ab24448, Lot # GR26258-7) (1:2000, Abcam), 

anti-GAPDH (ab9485) (1:2500, Abcam), mouse anti-COX IV (ab33985) (1:1000, Abcam), 

rabbit anti Histone H3 (9717s)(1:1000, New England Biolabs)). Membrane was washed with 

PBS-T and incubated with an appropriate secondary antibody conjugated to HRP. Bands 

were detected using chemiluminesence (Thermo Scientific SuperSignal®West Dura 

Extended Duration Substrate) and viewed using the Image Quant LAS4000. 

RNA extraction and cDNA synthesis 

Total RNA was extracted using Trizol® reagent (Fisher Scientific, UK). Trizol (1ml for 

1x106 cells) was pipetted up and down several times until the samples were homogenised. 

200 µl of chloroform was added per ml of Trizol®, shaken vigorously for 15 seconds and 

incubated at room temperature for 2-3 minutes. Samples were centrifuged at 13000 rpm for 

15 minutes at 4 °C. The upper layer was decanted to new tubes and 500 µl isopropanol added 

and incubated at room temperature for 10 minutes. Samples were centrifuged at 13000 rpm 

for 15 minutes at 4 °C. Supernatant was discarded and the white RNA pellet washed three 

times with 70% ethanol. RNase free water was used to re-suspend the pellet. Samples were 

stored at -80 °C until required. RNA quantity and purity was measured using a nanodrop 

spectrophotometer using A260/A280 ratios (Thermo-Fisher scientific, Waltham, MA, USA). 

cDNA was synthesised using 2 µg of total RNA in 20 µl volume using the High Capacity 

RNA to cDNA kit (Applied Biosystems) according to the manufacturer’s instructions. cDNA 



samples were stored at -20 °C until required. Negative template controls consisting of 

reaction without cDNA were run for all experiments.  

RQ-PCR 

The quantitative real-time PCR was performed by using StepOne Software v2.3 analytical 

software (Thermo-cycler 96 well plate Real time PCR, Applied Biosystems, US) in a volume 

of 12.5 µl containing 1µl cDNA (100ng), 0.625 µl ppp, 6.25 µl 2xMM (Prime time Master 

Mix, Integrated DNA technologies). The PCR reaction conditions were 95 °C for 3 minutes, 

followed by 40 cycles comprising denaturation at 95 °C for 5 seconds, annealing at 60 °C for 

30 seconds. Predesigned assay reagents with FAM/ TAMRA fluorescence were used for 

CCN1 (Hs00155479_m1), GAPDH ((PT.39a.22214836) from Integrated DNA Technologies), 

p21 (00355782-M1), p27 (01597588-M1) and cyclin D1 ((00765553-M1) from Applied 

Biosystems). GAPDH used as an endogenous control, gene expression levels were reported 

using the ∆∆CT method with experimental samples run in triplicate and independent 

replicates of RNA completed in triplicate for reporting.  

Statistics 

Statistical analysis was performed on data from at least 3 independent experiments. For RQ-

PCR, samples were run in triplicate and then independent replicates performed in triplicate 

for publication. Students t-test was performed to identify significance between samples and 

where p<0.05 was deemed significant.  

 

  



Results 

CCN1 expression is inversely correlated with MCL aggressiveness    

In order to assess the potential role(s) of CCN1 in MCL, we have investigated CCN1 

expression using RQ-PCR and Western blotting.  REC1, G519, JVM2 human MCL cell lines 

were used as a model for MCL disease progression in the order from indolent to aggressive 

disease REC1<G519<JVM2 respectively.   

RQ-PCR for CCN1 expression shows an inverse relationship with disease aggression. 

Normal peripheral blood (nPB) lymphocytes from donors were also assessed for CCN1 

expression. CCN1 was barely detected in nPB (CT=34.9 ± 0.75) and therefore set to a fold 

change of 1 to asses relative expression within the MCL cell lines. CCN1 expression was 

high in REC1 cells (Fold change 67.18 ± 0.14) and sequentially decreased in progressive 

G519 cells (Fold change 20.1 ± 0.22) and JVM2 cells (Fold change 2.86 ± 0.52) (Figure 1A).   

Investigation of CCN1 total protein expression using western blot analysis showed CCN1 

protein expression at the following approximate molecular weights; 42kDa consistent with 

expression of full length CCN1, 28-30kDa and 18-20kDa consistent with expression of 

truncated proteins. Expression of full–length CCN1 barely altered through the cell lines 

however, expression of the truncated form (18-20kDa) was high in REC1 cells (OD:1.0) 

reduced in G519 cells (OD:0.5) and barely detected in JVM2 cells (Figure 1B and Fig 1C). 

Reports from a previous study (Choi et al., 2013) suggests the 28-30kDa moiety could 

comprise the SP, IGFBP, VWC and TSP-1 domains whilst the 18-20 kDa moiety could be 

either the SP, IGFBP, VWC fragment or TSP-1 and CT fragment, or potentially a mix of both 

(Figure 1D).  

Cyclin D1 is downregulated in progressive MCL  

We have investigated cyclin D1 expression using RQ-PCR and Western blotting using total 

protein extracts from the three MCL cell lines; REC1, G519 and JVM2. RQ-PCR shows 

cyclin D1 expression is high in REC1 cells and decreased in G519 and JVM2 cells consistent 

with deregulation of cyclin D1 in aggressive disease (Figure 2A).  Fold changes in cyclin D1 

expression were 10.1, 4.6 and 1.0 for REC1, G519 and JVM2 respectively.        



Cyclin D1 total protein expression mirrored that of the gene expression where cyclin D1 was 

highly expressed in the Rec1 cells (OD: 1.0), reduced to one fifth in the G519 cells (OD: 0.2) 

and not detected by western blotting in the JVM2 cell line (Figure 2B and 2C).  

High expression of p21CIP1 and down expression of p27KIP1 in aggressive 

MCL   

Cyclin dependent kinase inhibitors, p21CIP1 and p27KIP1, were also investigated for an 

involvement in disease progression.  

RQ-PCR shows increasing expression of p21 with disease progression whilst expression 

levels of p27 are decreased with disease progression in G519 and JVM2 cells (Figure 2D).  

Total cell lysates showed that p21CIP1 was not detected in REC1 cells but had increasing 

expression in G519 (OD: 0.6) and JVM2 cells (OD: 1.0) (Figure 2E and F). Whilst RQ-PCR 

and western blotting show that p27KIP1 expression was high in the REC1 and decreased with 

disease progression in G519 and JVM2 cells (Figures 2G-I). Total cell lysates showed that 

p27KIP1 was high expressed in REC1 (OD: 1.5) and decreased in G519 (OD: 1.0) and not 

detected in JVM2 cells (Figures 2H and 2I).      

Altered subcellular localization of p21CIP1 and p27KIP1 portray resistance in 

progressive MCL  

To investigate the subcellular localization of p21CIP1 and p27KIP1 in MCL, we extracted 

cytoplasmic, mitochondrial and nuclear protein from cells and performed western blotting.  

Expression of p21CIP1 was not detected in any fraction for early stage REC1 cells. For the 

progressive G519 and JVM2 cells, p21CIP1 was primarily expressed in the cytoplasm and was 

not detected in the nucleus (Figure 3A). Expression of p21CIP1 was detected in the 

mitochondrial fraction for JVM2 cells. Blotting for GAPDH (cytoplasmic), COX IV 

(Mitochondrial) and Histone 3 (Nuclear) markers were used as controls for each fraction.  

For p27KIP1, expression was only detected in the cytoplasmic fraction and not in 

mitochondrial or nuclear fractions (figure 3B). GAPDH (cytoplasmic), COX IV 

(Mitochondrial) and Histone 3 (Nuclear) markers were used as loading controls and to ensure 

clean fractions were obtained for each, without cross contamination during the fractionation 

process.  



 

  



Discussion 

MCL is considered an aggressive disease and has one of the worst outcomes among B-cell 

lymphomas due to the dysregulation of the DNA damage response pathways accompanied 

with abnormal cell survival mechanisms suppressing apoptosis (Campo & Rule, 2015; Moros 

et al., 2014). MCL characterised by overexpression of cyclin D1 as a result of t(11;14) 

chromosomal translocation that leads to dysregulation of the cell cycle (O’Connor, 2007; 

Zucca & Bertoni, 2013). Furthermore, MCL is characterised by clinical course where variants 

are subdivided into indolent form (classic morphology) and aggressive (blastoid or 

pleomorphic appearance) (Kridel et al., 2012). The heterogeneous biology and aggressive 

behaviour of MCL present a challenge for designing standard therapies (Smith, 2011) and 

therefore require further investigation to identify more effective treatment strategies.  

In this study, we have investigated the role(s) of CCN1 in MCL and investigated cell cycle 

regulation using expression of cyclin D1, p21CIP1 and p27KIP1 in the cell line model 

representing disease progression in MCL where the magnitude of aggressive behaviour is in 

the order REC1<G519<JVM2. CCN1 dysregulation was identified in MCL progression 

where CCN1 was highly expressed in the REC1 cells and reduced in the aggressive G519 and 

JVM2 cells. CCN1 expression decreases with disease progression. We found that the lower 

expression of CCN1 in aggressive MCL cell lines (G519 and JVM2) is additional risk factor 

for disease progression. However, many studies have indicated that the high expression of 

CCN1 is implicated in disease progression, tumorigenesis and invasion of hepatocellular 

carcinoma (HCC) (Li et al., 2012), breast cancer (O'Kelly et al., 2008), prostatic carcinoma 

(D'Antonio et al., 2010), gliomas (Xie et al., 2004b) and gastric cancer (Lin et al., 2007). 

Further investigation demonstrated that whilst full-length CCN1 remains relatively constant 

within the cell lines, the 18-20 kDa truncated form is decreased within aggressive G519 and 

JVM2 cells. Previous reports identify that this truncated form could potentially be a fragment 

consisting of the SP-IGFBP-VWC domains or the TSP-1-CT domains (Choi et al., 2013) 

inferring that either transcriptional control or post-translational control of CCN1 (via 

degradation by MMP2 / MMP14 for example (Choi et al., 2013)) is lost within aggressive 

MCL. In 2006, Planque et al., have found that full length of CCN3 inhibited cell growth 

whilst a truncated isoform induced “morphological transformation of chicken embryo 

fibroblasts” suggesting a role in oncogenic activity. The truncated isoform of CCN3 

translocated to the nucleus of cancer cell lines supporting the role of the carboxyl terminal 



being involved in transcriptional regulation. Increasing evidence indicates the Nuclear 

Localisation Signal (NLS), a short peptide motif mediating nuclear localisation of proteins, is 

located in the CT module of CCN3 (lysine-rich PTDKKGKKCLRTKKSLKA) (Planque, 

2006). Perbal (1999) found nuclear localisation of the truncated isoform of CCN3 (NOV) 

protein (31/32kDa) in the nucleus of 143 and HeLa cells. It is suggested the truncated isoform 

may be deficient of N-terminus to have a role in the gene expression of target cells since 

antibodies against the C-terminus of CCN3 / NOV were used (KKGKKCLRTKKS). CCN1 

(CYR61) and CCN3 (NOV) are members in the CCN family of matricellular proteins sharing 

40%-60% amino acid homology which may infer potential for the CCN1 truncated isoform to 

have nuclear localisation and role(s) in gene regulation (Perbal, 1999; Planque & Perbal, 

2003). Supporting this, the CCN3 NLS region (PTDKKGKKCLRTKKSLKA)(Planque, 

2006) is highly conserved in the CCN1 CT domain (KKGKKCSKTKKS). This may suggest 

that the CCN1 truncated form (18-20 k Da) may translocate to the nucleus of MCL cell lines. 

This is consistent with CCN1 found in the nucleus of bladder smooth muscle cells (Chen & 

Du, 2007; Tamura et al., 2001).  

Full length CCN proteins can play an anti-proliferative role, whilst truncated isoforms may 

induce tumour proliferation (Planque & Perbal, 2003). The truncated isoform appears to have 

altered biological function(s) owing to CCN1 partition into the soluble phase (28kDa), 

diffusing freely within tissue and may act as an antagonist towards the full-length CCN1 form 

within the insoluble matrix (42kDa) (Pendurthi et al., 2005). For example, CCN1 is cleaved 

by plasmin and releases a truncated form of CCN1 (28kDa) which may support endothelial 

cell migration in breast carcinoma (Pendurthi et al., 2005). In 2013, (Choi et al.), found the 

CCN1 truncated form (11-23kDa) expressed in diabetic retinopathy patients instead of the 

full-length 42kDa protein. It is also postulated that a truncated isoform of CCN1 can arise due 

to alternative mRNA splicing (Perbal, 2009).  

In this study, Cyclin D1 was also deregulated in MCL and our findings are consistent with 

previous reports of cyclin D1 down regulation and disease progression (Peng, Chou & Hsu, 

1998). Interestingly, Saglam et al. (2014) have demonstrated that the up regulation of cyclin 

D1 and p53 are activated by the CCN1 pathway in high-grade ductal carcinoma in situ 

(DCIS). Consistent with these findings, we showed a positive association between CCN1 and 

cyclin D1 expression in all MCL cell lines. In other solid tumours, where cyclin D1 is 

overexpressed; breast, liver, lung, and brain cancer (Gillett et al., 1996; Hall & Peters, 1996; 



Molenaar et al., 2008) requires consistent signalling from the extracellular matrix and growth 

factors (Assoian & Klein, 2008).  

MCL progression involving down regulation of cyclin D1 and the up regulation of p21CIP1 

may contribute to treatment resistance (Abukhdeir & Park, 2008). We have shown that 

p21CIP1 levels increase with disease progression.  This is consistent with other studies that 

report overexpression of p21CIP1 was correlated with tumour progression; in breast 

(Ceccarelli et al., 2001) and ovarian carcinoma (Ferrandina et al., 2000) and in brain tumours 

(Jung et al., 1995). 

We have shown that p27KIP1 levels decrease with disease progression also consistent with 

findings from Izban et al. (2000), where p27KIP1 was overexpressed in early stage disease 

(typical MCL) and down regulated in aggressive stage (blastoid variants) where it was 

associated with a high proliferation rate of blastoid MCL. Conversely, in 1998 (Quintanilla-

Martinez et al.) showed expression of p27KIP1 was inversely associated with the proliferation 

rate of MCL cells; undetected in typical MCL cells (classic disease) associated with low 

proliferation rate but was overexpressed in the blastic variant of MCL cells (aggressive 

disease) with higher proliferation rate. 

P27KIP1 and p21CIP1 have important roles in promotion of assembly of CCND-CDK4/6 

complexes (LaBaer et al., 1997). This interaction leads to sequestration of p27KIP1 in CCND-

CDK4 complex which blocks inhibition of the CCNE-CDK2 complex (Perez‐Roger et al., 

1999). Furthermore, investigation of p21CIP1 expression in MCL progression showed down 

regulation at early stage disease and overexpression at advanced stage that mirrors its roles in 

MCL progression.  

More importantly, in cancer, the tumour suppressor function of p21CIP1 and p27KIP1 depends 

on their nuclear localization (Jeannot et al., 2015; Romanov, Pospelov & Pospelova, 2012). 

Many studies have found that phosphorylation of specific sites of p27KIP1 and p21CIP1 lead to 

their export into the cytoplasm where they can act as a tumour promotors and induce drug 

resistance (Ohkoshi, Yano & Matsuda, 2015; Zhao et al., 2014). In this study, p21CIP1 and 

p27KIP1 were found in the cytoplasmic fractions and absent in nuclear fractions of all three 

cell lines (REC1, G519 and JVM2). This suggests in MCL, p21CIP1 and p27KIP1 have lost 

their tumour suppressor roles and acquired tumour promoter roles by localisation to the 

cytoplasm.  Whilst mutation of p21CIP1 has not been investigated here, mutation of the p21CIP1 

gene frequently occurs in cancer cells leading to inactivation of p21CIP1 with loss of function 



to block the cell cycle, even when overexpressed (Lu et al., 1998b; Lukas et al., 1997). While 

regulation of p27KIP1 is different from other cell cycle inhibitors, p27KIP1 gene mutation is 

rare (Garrett-Engele et al., 2007).  

CCN1 likely plays key role(s) in haematopoiesis and in B cell development through 

modulation of stem cell signalling pathways, TGF β, BMP, Notch, Wnt-β catenin (McCallum 

& Irvine, 2009; Wells et al., 2015). CCN1 roles within haematological malignancy show 

CCN1 promotes survival and inhibits apoptosis in AML (Niu et al., 2014) and 

overexpression of CCN1 in multiple myeloma (MM) postponed tumour growth and 

suppressed bone destruction (Johnson et al., 2014). CCN1 signalling involves many stem cell 

pathways active within the bone marrow microenvironment where haematopoiesis ensues; 

CCN1 can activate the Wnt-β catenin-TCF4 signalling pathway in glioma cell (Xie et al., 

2004a) and induces Wnt3A osteoblast differentiation of mesenchymal stem cells (Si et al., 

2006). CCN1 in some cancers plays important roles in enhancing apoptosis, suppressing 

tumour growth, such as non-small-cell lung cancer (NSCLC) cell lines through activating the 

β-catenin-c-myc-p53-p21 signalling pathway  (Tong et al., 2004). Moreover, CCN1 enhances 

pancreatic cancer cell motility in vitro and cell tumorgenic growth in vivo by regulating 

sonic-Hedgehog through integrin-Notch-signalling pathway (Haque et al., 2012).  

In conclusion, CCN1 expression appears to be regulated in MCL, where reduced expression 

of the truncated forms (18-20 and 28-30 kDa) is associated with aggressive disease. In 

combination with reduced expression of cyclin D1 and increased expression of p21, this 

molecular signature may depict aggressive disease and treatment resistance. Further 

investigation will ascertain CCN1 role(s) in MCL progression.         

Acknowledgements 

We would like to thank the Iraqi Government for funding this work.     

References  

Abbas, T. & Dutta, A. (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev 

Cancer 9 (6): 400-414. 

 

Abukhdeir, A. M. & Park, B. H. (2008) P21 and p27: roles in carcinogenesis and drug resistance. 

Expert Rev mol med 10: e19. 

 
Assoian, R. K. & Klein, E. A. (2008) Growth control by intracellular tension and extracellular 

stiffness. Trends Cell Biol 18 (7):347-352. 



 

Bai, T., Chen, C.-C. & Lau, L. F. (2010) Matricellular protein CCN1 activates a proinflammatory 

genetic program in murine macrophages. J Immunol 184 (6):3223-3232. 

 

Balsas. P., Esteve-Arenys, A., Roldán, J., Jiménez, L., Rodríguez, V., Valero, J., G., Chamorro-

Jorganes, A., de la Bellacasa, R., P., Teixidó, J., Matas-Céspedes, A., Moros, A., Martínez, A., Campo, 

E., Sáez-Borderías, A., Borrell, J., I., Pérez-Galán, P., Colomer, D. & Roué, G. (2017) Activity of the 

novel BCR kinase inhibitor IQS019 in preclinical models of B-cell non-Hodgkin lymphoma. J 

Hematol Oncol 10(1):80.  

 

Baretton, G., Klenk, U., Diebold, J., Schmeller, N. & Löhrs, U. (1999) Proliferation-and apoptosis-

associated factors in advanced prostatic carcinomas before and after androgen deprivation therapy: 

prognostic significance of p21/WAF1/CIP1 expression. Br J Cancer 80 (3-4):546-555. 

 

Bartholin, L., Wessner, L. L., Chirgwin, J. M. & Guise, T. A. (2007) The human Cyr61 gene is a 

transcriptional target of transforming growth factor beta in cancer cells. Cancer Lett 246 (1):230-236. 

 

Beà, S., Valdés-Mas, R., Navarro, A., Salaverria, I., Martín-Garcia, D., Jares, P., Giné, E., Pinyol, M., 

Royo, C., Nadeu, F., Conde, L., Juan, M., Clot, G., Vizàn, P., Croce, L., D., Puente, D., A., López-

Guerra, M., Moros, A., Roue, G., Aymerich, M., Villamor, N., Colomo, L., Martínez, A., Valera, A., 

Martín-Subero, J., I., Amador, V., Hernàndez, L., Rozman, M., Enjuanes, A., Forcada, P., Muntañola, 

A., Hartmann, E., M., Calasanz, M., J., Rosenwald, A., Ott, G., Hernàndez-Rivas, J., M., Klapper, W., 

Siebert, R., Wiestner, A., Wilson, W., H., Colomer, D., López-Guillermo, A., López-Otin, C., Puente, 

X., S. & Campo, E. (2013) Landscape of somatic mutations and clonal evolution in mantle cell 

lymphoma. Proc Natl Acad Sci U S A 110 (45): 18250–18255.   

Besson, A., Dowdy, S. F. & Roberts, J. M. (2008) CDK inhibitors: cell cycle regulators and beyond. 

Dev Cell 14 (2):159-169. 

Brennan, P., Palacios-Callender, M., Umar, T., Tant, S. & Langdon, J. (2002) Expression of type 2 

nitric oxide synthase and p21 in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 31 (2):200-

205. 

 

Bretones, G., Delgado, M. D. & León, J. (2015) Myc and cell cycle control. Biochim Biophys Acta 

(BBA)-Gene Regulatory Mechanisms 1849 (5):506-516. 

 

Campo, E. & Rule, S. (2015) Mantle cell lymphoma: evolving management strategies. Blood 125 

(1):48-55. 

 

Camps, J., Salaverria, I., Garcia, M. J., Prat, E., Beà, S., Pole, J. C., Hernández, L., Del Rey, J., 

Cigudosa, J. C. & Bernués, M. (2006) Genomic imbalances and patterns of karyotypic variability in 

mantle-cell lymphoma cell lines. Leukemia Res 30 (8):923-934. 

Cassaday, R. D., Goy, A., Advani, S., Chawla, P., Nachankar, R., Gandhi, M. & Gopal, A. K. (2015) 

A phase II, single-arm, open-label, multicenter study to evaluate the efficacy and safety of P276-00, a 

cyclin-dependent kinase inhibitor, in patients with relapsed or refractory mantle cell lymphoma. Clin 

Lymphoma Myeloma Leuk 15 (7):392-397. 

 



Ceccarelli, C., Santini, D., Chieco, P., Lanciotti, C., Taffurelli, M., Paladini, G. & Marrano, D. (2001) 

Quantitative p21WAF‐1/p53 immunohistochemical analysis defines groups of primary invasive breast 

carcinomas with different prognostic indicators. Int J Cancer 95 (2):128-134. 

 

Chen, G., Cheng, Y., Zhang, Z., Martinka, M. & Li, G. (2011) Prognostic significance of cytoplasmic 

p27 expression in human melanoma. Cancer Epidemiol Biomarkers Prev 20(10):2212-2221  

 

Chen, Y., Du, X. (2007) Functional Properties and Intracellular Signaling of CCN1/Cyr61. J Cell 

Biochem 100:1337-1345. 

Cheng, T.-Y., Wu, M.-S., Hua, K.-T., Kuo, M.-L. & Lin, M.-T. (2014) Cyr61/CTGF/Nov family 

proteins in gastric carcinogenesis. World J Gastroenterol 20 (7):1694. 

 

Chien, W., Kumagai, T., Miller, C. W., Desmond, J. C., Frank, J. M., Said, J. W. & Koeffler, H. P. 
(2004) Cyr61 suppresses growth of human endometrial cancer cells. J Biol Chem 279 (51):53087-

53096. 

 

Choi, J., Lin, A., Shrier, E., Lau, L. F., Grant, M. B. & Chaqour, B. (2013) Degradome products of the 

matricellular protein CCN1 as modulators of pathological angiogenesis in the retina. J Biol Chem 288 

(32):23075-23089. 

 

Ciccarelli, C., Marampon, F., Scoglio, A., Mauro, A., Giacinti, C., De Cesaris, P. & Zani, B. M. (2005) 

p21WAF1 expression induced by MEK/ERK pathway activation or inhibition correlates with growth 

arrest, myogenic differentiation and onco-phenotype reversal in rhabdomyosarcoma cells. Mol Cancer 

4 (1):41. 

 

Coats, S., Flanagan, W. M., Nourse, J. & Roberts, J. M. (1996) Requirement of p27Kip1 for 

restriction point control of the fibroblast cell cycle. Science 272 (5263):877. 

 

Crawford, L. J. & Irvine, A. E. (2016) The role of the CCN family of proteins in blood cancers. J Cell 

commun Signal 10 (3):197-205. 

 

Crockett, J. C., Schütze, N., Tosh, D., Jatzke, S., Duthie, A., Jakob, F. & Rogers, M. J. (2007) The 

matricellular protein CYR61 inhibits osteoclastogenesis by a mechanism independent of αvβ3 and 

αvβ5. Endocrinology 148 (12):5761-5768. 

 

D'Antonio, K. B., Toubaji, A., Albadine, R., Mondul, A. M., Platz, E. A., Netto, G. J. & Getzenberg, 

R. H. (2010) Extracellular matrix associated protein CYR61 is linked to prostate cancer development. 

J Urol 183 (4):1604-1610. 

 

de Renty, C., DePamphilis, M. L. & Ullah, Z. (2014) Cytoplasmic localization of p21 protects 

trophoblast giant cells from DNA damage induced apoptosis. PLoS One 9 (5):e97434. 

 

Denicourt, C., Saenz, C. C., Datnow, B., Cui, X.-S. & Dowdy, S. F. (2007) Relocalized p27Kip1 
tumor suppressor functions as a cytoplasmic metastatic oncogene in melanoma. Cancer Res 67 

(19):9238-9243. 



 

Devgan, V., Mammucari, C., Millar, S. E., Brisken, C. & Dotto, G. P. (2005) p21WAF1/Cip1 is a 

negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev 

19 (12):1485-1495. 

 

Dobroff, A. S., Wang, H., Melnikova, V. O., Villares, G. J., Zigler, M., Huang, L. & Bar-Eli, M. 

(2009) Silencing cAMP-response element-binding protein (CREB) identifies CYR61 as a tumor 

suppressor gene in melanoma. J Biol Chem 284 (38):26194-26206. 

 

Dotterweich, J., Ebert, R., Kraus, S., Tower, R. J., Jakob, F. & Schütze, N. (2014) Mesenchymal stem 

cell contact promotes CCN1 splicing and transcription in myeloma cells. Cell Commun Signal 

12(1):36. 

 

Dreyling, M., Aurer, I., Cortelazzo, S., Hermine, O., Hess, G., Jerkeman, M., Le Gouill, S., Ribrag, V., 

Trněný, M., Visco, C., Walewski, J., Zaja, F. & Zinzani, P. L. (2018) Treatment for patients with 

relapsed/refractory mantle cell lymphoma: European-based recommendations. Leuk Lymphoma 

59(8):1814-1828. 

 

Duncan, T. J., Al-Attar, A., Rolland, P., Harper, S., Spendlove, I. & Durrant, L. G. (2010) 

Cytoplasmic p27 expression is an independent prognostic factor in ovarian cancer. Int J Gynecol 

Patho 29 (1):8-18. 

 

Feng, P., Wang, B. & Ren, E. C. (2008) Cyr61/CCN1 is a tumor suppressor in human hepatocellular 

carcinoma and involved in DNA damage response. Int J Biochem Cell Biol 40 (1):98-109. 

 

Ferrandina, G., Stoler, A., Fagotti, A., Fanfani, F., Sacco, R., De Pasqua, A., Mancuso, S. & Scambia, 

G. (2000) p21WAF1/CIP1 protein expression in primary ovarian cancer. Int J Oncol 17 (6):1231-

1236. 

 

Garrett-Engele, C. M., Tasch, M. A., Hwang, H. C., Fero, M. L., Perlmutter, R. M., Clurman, B. E. & 

Roberts, J. M. (2007) A mechanism misregulating p27 in tumors discovered in a functional genomic 

screen. PLoS Genet 3 (12):e219. 

 

Gelebart, P., Anand, M., Armanious, H., Peters, A. C., Bard, J. D., Amin, H. M. & Lai, R. (2008) 

Constitutive activation of the Wnt canonical pathway in mantle cell lymphoma. Blood 112 (13):5171-

5179. 

 

Gery, S., Xie, D., Yin, D., Gabra, H., Miller, C., Wang, H., Scott, D., William, S. Y., Popoviciu, M. L. 

& Said, J. W. (2005) Ovarian carcinomas: CCN genes are aberrantly expressed and CCN1 promotes 

proliferation of these cells. Clin Cancer Res 11 (20):7243-7254. 

 

Gillett, C., Smith, P., Gregory, W., Richards, M., Millis, R., Peters, G. & Barnes, D. (1996) Cyclin D1 

and prognosis in human breast cancer. Int J Cancer 69 (2):92-99. 

 



Hall, M. & Peters, G. (1996) Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk 

inhibitors in human cancer. Adv Cancer Res 68:67-108. 

 

Haque, I., De, A., Majumder, M., Mehta, S., McGregor, D., Banerjee, S. K., Van Veldhuizen, P. & 

Banerjee, S. (2012) The matricellular protein CCN1/Cyr61 is a critical regulator of Sonic Hedgehog 

in pancreatic carcinogenesis. J Biol Chem 287 (46):38569-38579. 

 

He, W., Wang, X., Chen, L. & Guan, X. (2012) A crosstalk imbalance between p27kip1 and its 

interacting molecules enhances breast carcinogenesis. Cancer Biother Radiopharm 27 (7):399-402. 

 

Hirama, T. & Koeffler, H. P. (1995) Role of the cyclin-dependent kinase inhibitors in the 

development of cancer. Blood 86 (3):841-854. 

 

Holloway, S. E., Beck, A. W., Girard, L., Jaber, M. R., Barnett, C. C., Brekken, R. A. & Fleming, J. B. 

(2005) Increased expression of Cyr61 (CCN1) identified in peritoneal metastases from human 

pancreatic cancer. J Am Coll Surg 200 (3):371-377. 

 

Izban, K. F., Alkan, S., Singleton, T. P. & Hsi, E. D. (2000) Multiparameter immunohistochemical 

analysis of the cell cycle proteins cyclin D1, Ki-67, p21WAF1, p27KIP1, and p53 in mantle cell 

lymphoma. Arch Pathol Lab Med 124 (10):1457-1462. 

 

Jandova, J., Beyer, T. E., Meuillet, E. J. & Watts, G. S. (2012) The matrix protein CCN1/CYR61 is 

required for αVβ5‐mediated cancer cell migration. Cell Biochem Funct 30 (8):687-695. 

 

Jares, P., Colomer, D. & Campo, E. (2012) Molecular pathogenesis of mantle cell lymphoma. J Clin 

Invest 122 (10):3416. 

 

Jeannot, P., Callot, C., Baer, R., Duquesnes, N., Guerra, C., Guillermet-Guibert, J., Bachs, O. & 

Besson, A. (2015) Loss of p27Kip1 promotes metaplasia in the pancreas via the regulation of Sox9 

expression. Oncotarget 6 (34):35880. 

 

Jedsadayanmata, A., Chen, C.-C., Kireeva, M. L., Lau, L. F. & Lam, S. C.-T. (1999) Activation-

dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is 

mediated through integrin αIIbβ3. J Biol Chem 274 (34):24321-24327. 

 

Jeong, D., Heo, S., Ahn, T. S., Lee, S., Park, S., Kim, H., Park, D., Bae, S. B., Lee, S. S. & Lee, M. S. 

(2014) Cyr61 expression is associated with prognosis in patients with colorectal cancer. BMC Cancer 

14(1):164. 

 

Jim Leu, S. J., Sung, J. S., Chen, M. Y., Chen, C. W., Cheng, J. Y., Wang, T. Y. & Wang, J. J. (2013) 

The matricellular protein CCN1 suppresses lung cancer cell growth by inducing senescence via the 

p53/p21 pathway. J of Cellular Biochem 114 (9):2082-2093. 

 



Johnson, S. K., Stewart, J. P., Bam, R., Qu, P., Barlogie, B., van Rhee, F., Shaughnessy Jr, J. D., 

Epstein, J. & Yaccoby, S. (2014) CYR61/CCN1 overexpression in the myeloma microenvironment is 

associated with superior survival and reduced bone disease. Blood 124 (13):2051-2060. 

 

Jung, J.-M., Bruner, J. M., Ruan, S., Langford, L. A., Kyritsis, A. P., Kobayashi, T., Levin, V. A. & 

Zhang, W. (1995) Increased levels of p21WAF1/Cip1 in human brain tumors. Oncogene 11 

(10):2021-2028. 

 

Kapranos, N., Stathopoulos, G., Manolopoulos, L., Kokka, E., Papadimitriou, C., Bibas, A., Yiotakis, 

J. & Adamopoulos, G. (2000) p53, p21 and p27 protein expression in head and neck cancer and their 

prognostic value. Anticancer Res 21 (1B):521-528. 

 

Kipkeew, F., Kirsch, M., Klein, D., Wuelling, M., Winterhager, E. & Gellhaus, A. (2016) CCN1 

(CYR61) and CCN3 (NOV) signaling drives human trophoblast cells into senescence and stimulates 

migration properties. Cell Adh Migr 10 (1-2):163-178. 

 

Kireeva, M. L., Mo, F.-E., Yang, G. P. & Lau, L. F. (1996) Cyr61, a product of a growth factor-

inducible immediate-early gene, promotes cell proliferation, migration, and adhesion. Mol Cell Biol 

16(4):1326-1334. 

 

Komiya, T., Hosono, Y., Hirashima, T., Masuda, N., Yasumitsu, T., Nakagawa, K., Kikui, M., Ohno, 

A., Fukuoka, M. & Kawase, I. (1997) p21 expression as a predictor for favorable prognosis in 

squamous cell carcinoma of the lung. Clin Cancer Res 3 (10):1831-1835. 

 

Kridel, R., Meissner, B., Rogic, S., Boyle, M., Telenius, A., Woolcock, B., Gunawardana, J., Jenkins, 

C., Cochrane, C. & Ben-Neriah, S. (2012) Whole transcriptome sequencing reveals recurrent 

NOTCH1 mutations in mantle cell lymphoma. Blood 119 (9):1963-1971. 

 

Kruck, S., Merseburger, A. S., Hennenlotter, J., Scharpf, M., Eyrich, C., Amend, B., Sievert, K. D., 

Stenzl, A. & Bedke, J. (2012) High cytoplasmic expression of p27Kip1 is associated with a worse 

cancer‐specific survival in clear cell renal cell carcinoma. BJU Int 109 (10):1565-1570. 

 

LaBaer, J., Garrett, M. D., Stevenson, L. F., Slingerland, J. M., Sandhu, C., Chou, H. S., Fattaey, A. & 
Harlow, E. (1997) New functional activities for the p21 family of CDK inhibitors. Genes Dev 

11(7):847-862. 

 

Lau, L. F. (2011) CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci 

68 (19):3149. 

 

Leu, S.-J., Chen, N., Chen, C.-C., Todorović, V., Bai, T., Juric, V., Liu, Y., Yan, G., Lam, S. C.-T. & 

Lau, L. F. (2004) Targeted Mutagenesis of the Angiogenic Protein CCN1 (CYR61) SELECTIVE 

INACTIVATION OF INTEGRIN α6β1-HEPARAN SULFATE PROTEOGLYCAN 

CORECEPTOR-MEDIATED CELLULAR FUNCTIONS. J Biol Chem 279 (42):44177-44187. 

 



Li, Y., Nakka, M., Kelly, A. J., Lau, C. C., Krailo, M., Barkauskas, D. A., Hicks, J. M. & Man, T.-K. 

(2016) p27 Is a Candidate Prognostic Biomarker and Metastatic Promoter in Osteosarcoma. Cancer 

Res 76(13):4002–4011   

 

Li, Z.-Q., Ding, W., Sun, S.-J., Li, J., Pan, J., Zhao, C., Wu, W.-R. & Si, W.-K. (2012) Cyr61/CCN1 

Is Regulated by Wnt/β-Catenin Signaling and Plays an Important Role in the Progression of 

Hepatocellular Carcinoma (Cyr61 Is Regulated by Wnt and Plays a Role in HCC). PLoS One 7 

(4):e35754. 

 

Lin, M.-T., Chang, C.-C., Chen, S.-T., Chang, H.-L., Su, J.-L., Chau, Y.-P. & Kuo, M.-L. (2004) 

Cyr61 expression confers resistance to apoptosis in breast cancer MCF-7 cells by a mechanism of NF-

κB-dependent XIAP up-regulation. J Biol Chem 279 (23):24015-24023. 

 

Lin, M.-T., Chang, C.-C., Lin, B.-R., Yang, H.-Y., Chu, C.-Y., Wu, M.-H. & Kuo, M.-L. (2007) 

Elevated expression of Cyr61 enhances peritoneal dissemination of gastric cancer cells through 

integrin α2β1. J Biol Chem 282 (47):34594-34604. 

 

Liu, Y., Zhang, X. & Zhong, J., F. (2015) Current approaches and advance in mantle cell lymphoma 

treatment. Stem Cell Investig 29;2:18. 

Lu, X., Toki, T., Konishi, I., Nikaido, T. & Fujii, S. (1998a) Expression of p21WAF1/CIP1 in 

adenocarcinoma of the uterine cervix. Cancer 82 (12):2409-2417. 

 

Lu, Y., Yamagishi, N., Yagi, T. & Takebe, H. (1998b) Mutated p21 (WAF1/CIP1/SDI1) lacking 

CDK-inhibitory activity fails to prevent apoptosis in human colorectal carcinoma cells. Oncogene 16 

(6):705-712. 

 

Lu, Z. & Hunter, T. (2010) Ubiquitylation and proteasomal degradation of the p21Cip1, p27Kip1 and 

p57Kip2 CDK inhibitors. Cell cycle 9 (12):2342-2352. 

 

Lukas, J., Groshen, S., Saffari, B., Niu, N., Reles, A., Wen, W.-H., Felix, J., Jones, L. A., Hall, F. L. 

& Press, M. F. (1997) WAF1/Cip1 gene polymorphism and expression in carcinomas of the breast, 

ovary, and endometrium. Am J pathol 150 (1):167. 

 

Maity, G., Mehta, S., Haque, I., Dhar, K., Sarkar, S., Banerjee, S. K. & Banerjee, S. (2014) Pancreatic 

tumor cell secreted CCN1/Cyr61 promotes endothelial cell migration and aberrant neovascularization. 

Sci Rep 4: 4995 | DOI: 10.1038/srep04995.  

 

Mathur, R., Sehgal, L., Braun, F. K., Berkova, Z., Romaguerra, J., Wang, M., Rodriguez, M. A., 

Fayad, L., Neelapu, S. S. & Samaniego, F. (2015) Targeting Wnt pathway in mantle cell lymphoma-

initiating cells. J Hematol Oncol 8 (1):63. 

 

McCallum, L. & Irvine, A. (2009) 'CCN3–a key regulator of the hematopoietic compartment. Blood 

Rev 23 (2):79-85. 

 



Menendez, J. A., Vellon, L., Mehmi, I., Teng, P. K., Griggs, D. W. & Lupu, R. (2005) A novel 

CYR61-triggered ‘CYR61-αvβ3 integrin loop’regulates breast cancer cell survival and 

chemosensitivity through activation of ERK1/ERK2 MAPK signaling pathway. Oncogene 24 (5):761-

779. 

 

Min, Y. H., Cheong, J.-W., Kim, J. Y., Eom, J. I., Lee, S. T., Hahn, J. S., Ko, Y. W. & Lee, M. H. 

(2004) Cytoplasmic mislocalization of p27Kip1 protein is associated with constitutive 

phosphorylation of Akt or protein kinase B and poor prognosis in acute myelogenous leukemia. 

Cancer Res 64 (15):5225-5231. 

 

Molenaar, J. J., Ebus, M. E., Koster, J., van Sluis, P., van Noesel, C. J., Versteeg, R. & Caron, H. N. 

(2008) Cyclin D1 and CDK4 activity contribute to the undifferentiated phenotype in neuroblastoma. 

Cancer Res 68 (8):2599-2609. 

 

Moros, A., Bustany, S., Cahu, J., Saborit-Villarroya, I., Martínez, A., Colomer, D., Sola, B. & Roué, 

G. (2014) Antitumoral activity of lenalidomide in in vitro and in vivo models of mantle cell 

lymphoma involves the destabilization of cyclin D1/p27KIP1 complexes. Clin Cancer Res 20 (2):393-

403. 

 

Müller, A., Zang, C., Chumduri, C., Dörken, B., Daniel, P. T. & Scholz, C. W. (2013) Concurrent 

inhibition of PI3K and mTORC1/mTORC2 overcomes resistance to rapamycin induced apoptosis by 

down‐regulation of Mcl‐1 in mantle cell lymphoma. Int J Cancer 133 (8):1813-1824. 

 

Nemes, J. A., Nemes, Z. & Márton, I. J. (2005) p21WAF1/CIP1 expression is a marker of poor 

prognosis in oral squamous cell carcinoma. J Oral Pathol Med 34 (5):274-279. 

 

Nevins, J. R. (2001) The Rb/E2F pathway and cancer. Hum Mol Genet 10 (7):699-703. 

 

Niu, C.-C., Zhao, C., Yang, Z., Zhang, X.-L., Pan, J. & Si, W.-K. (2014) Inhibiting CCN1 blocks 

AML cell growth by disrupting the MEK/ERK pathway. Cancer Cell Int 14 (1):74-74. 

 

Nordgren, T. M., Hegde, G. V. & Joshi, S. S. (2012) Ritonavir exhibits limited efficacy as a single 

agent in treating aggressive mantle cell lymphoma. J Cancer Sci Ther 4 (4):61-68. 

 

O'Kelly, J., Chung, A., Lemp, N., Chumakova, K., Yin, D., Wang, H.-J., Said, J., Gui, D., Miller, C. 

W. & Karlan, B. Y. (2008) Functional domains of CCN1 (Cyr61) regulate breast cancer progression. 

Int J Oncol 33 (1):59-67. 

 

O’Connor, O. A. (2007) Mantle cell lymphoma: identifying novel molecular targets in growth and 

survival pathways. ASH Education Program Book 2007 (1):270-276. 

 

Ohkoshi, S., Yano, M. & Matsuda, Y. (2015) Oncogenic role of p21 in hepatocarcinogenesis suggests 

a new treatment strategy. World J Gastroenterol 21 (42):12150. 

 



Pendurthi, U. R., Tran, T. T., Post, M. & Rao, L. V. M. (2005) Proteolysis of CCN1 by plasmin: 

functional implications. Cancer Res 65 (21):9705-9711. 

 

Peng, S.-Y., Chou, S.-P. & Hsu, H.-C. (1998) Association of downregulation of cyclin D1 and of 

overexpression of cyclin E with p53 mutation, high tumor grade and poor prognosis in hepatocellular 

carcinoma. J Hepatol 29 (2):281-289. 

 

Perbal, B. (1999) Nuclear localisation of NOVH protein: a potential role for NOV in the regulation of 

gene expression. Mol Pathol 52 (2):84. 

 

Perbal, B. (2009) Alternative splicing of CCN mRNAs…. it has been upon us. J Cell commun Signal 

3 (2):153-157. 

 

Pérez-Galán, P., Dreyling, M. & Wiestner, A. (2011) Mantle cell lymphoma: biology, pathogenesis, 

and the molecular basis of treatment in the genomic era. Blood 117 (1):26-38. 

 

Pérez-Sayáns, M., Suárez-Peñaranda, J. M., Gayoso-Diz, P., Barros-Angueira, F., Gándara-Rey, J. M. 

& García-García, A. (2013) The role of p21Waf1/CIP1 as a Cip/Kip type cell-cycle regulator in oral 

squamous cell carcinoma (Review). Med Oral Patol Oral y Cir Bucal 18 (2):e219. 

 

Perez‐Roger, I., Kim, S. H., Griffiths, B., Sewing, A. & Land, H. (1999) Cyclins D1 and D2 mediate 

Myc‐induced proliferation via sequestration of p27Kip1 and p21Cip1. EMBO J 18 (19):5310-5320. 

 

Perkins, N. D. (2002) Not just a CDK inhibitor: regulation of transcription by p21WAF1/CIP1/SDI1. 

Cell Cycle 1 (1):35-37. 

 

Piccolo, M. T. & Crispi, S. (2012) The dual role played by p21 may influence the apoptotic or anti-

apoptotic fate in cancer. J Cancer Res Updates 1 (2):189-202. 

 

Planque, N. (2006) Nuclear trafficking of secreted factors and cell-surface receptors: new pathways to 

regulate cell proliferation and differentiation, and involvement in cancers. Cell Commun Signal 4 

(1):7. 

 

Planque, N., Long Li, C., Saule, S., Bleau, A. M. & Perbal, B. (2006) Nuclear addressing provides a 

clue for the transforming activity of amino‐truncated CCN3 proteins. J Cell Biochem 99 (1):105-116. 

 

Planque, N. & Perbal, B. (2003) A structural approach to the role of CCN (CYR61/CTGF/NOV) 

proteins in tumourigenesis. Cancer Cell Int 3 (1):15. 

 

Qin, L.-F. & Ng, I. O.-l. (2001) Expression of p27 KIP1 and p21 WAF1/CIP1 in primary 
hepatocellular carcinoma: Clinicopathologic correlation and survival analysis. Hum Pathol 32 

(8):778-785. 



 

Queirós, A., C., Beekman, R., Vilarrasa-Blasi, R., Duran-Ferrer, M., Clot, G., Merkel, A., Raineri, E., 

Russiñol, N., Castellano, G., Beà, S., Navarro, A., Kulis, M., Verdaguer-Dot, N., Jares, P., Enjuanes, 

A., Calasanz, M., J., Bergmann, A., Vater, I., Salaverría, I., van de Werken, H., J., G., Wilson, W., H., 

Datta, A., Flicek, P., Royo, R., Martens, J., Giné, E., Lopez-Guillermo, A., Stunnenberg, H., G., 

Klapper, W., Pott, C., Heath, S., Gut, I., G., Siebert, R., Campo, E. & Martín-Subero, J. I. (2016) 

Decoding the DNA Methylome of Mantle Cell Lymphoma in the Light of the Entire B Cell Lineage. 

Cancer Cell 30(5):806-821 

 

Queiroz, A. B., Focchi, G., Dobo, C., Gomes, T., S., Ribeiro, D. A. & Oshima, C. T. (2010) 

Expression of P27, P21WAF/Cip1, and P16INK4a in normal oral epithelium, oral squamous 

papilloma, and oral squamous cell carcinoma. Anticancer Res 30 (7):2799-2803. 

 

Quintanilla-Martinez, L., Davies-Hill, T., Fend, F., Calzada-Wack, J., Sorbara, L., Campo, E., Jaffe, E. 

S. & Raffeld, M. (2003) Sequestration of p27^ K^ i^ p^ 1 protein by cyclin D1 in typical and blastic 

variants of mantle cell lymphoma (MCL): implications for pathogenesis. BLOOD-NEW YORK- 101 

(8):3181-3187. 

 

Quintanilla-Martinez, L., Thieblemont, C., Fend, F., Kumar, S., Pinyol, M., Campo, E., Jaffe, E. S. & 

Raffeld, M. (1998) Mantle cell lymphomas lack expression of p27 Kip1, a cyclin-dependent kinase 

inhibitor. Am J Pathol 153 (1):175-182. 

 

Rauert‐Wunderlich, H., Rudelius, M., Ott, G. & Rosenwald, A. (2016) Targeting protein kinase C in 

mantle cell lymphoma. Br J Haematol 173 (3):394-403. 

 

Ray, A., James, M. K., Larochelle, S., Fisher, R. P. & Blain, S. W. (2009) p27Kip1 inhibits cyclin D-

cyclin-dependent kinase 4 by two independent modes. Mol Cell Biol 29 (4):986-999. 

 

Romanov, V., Pospelov, V. & Pospelova, T. (2012) Cyclin-dependent kinase inhibitor p21Waf1: 

Contemporary view on its role in senescence and oncogenesis. Biochemistry (Moscow) 77 (6):575-

584. 

 

Roninson, I. B. (2002) Oncogenic functions of tumour suppressor p21 Waf1/Cip1/Sdi1: association 

with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett 179 (1):1-14. 

 

Roodman, G. D. (2014) CCN1: a sticky issue in myeloma. Blood 124 (13):2006-2008. 

 

Roy, S., Singh, R. P., Agarwal, C., Siriwardana, S., Sclafani, R. A. & Agarwal, R. (2008) 

Downregulation of both p21/Cip1 and p27/Kip1 produces a more aggressive prostate cancer 

phenotype. Cell Cycle 7 (12):1828-1835. 

 

Royo, C., Navarro, A., Clot, G., Salaverria, I., Giné, E., Jares, P., Colomer, D., Wiestner, A., Wilson, 

W., H., Vegliante, M., C., Fernandez, V., Hartmann, E., M., Trim, N., Erber, W., N., Swerdlow, S., H., 

Klapper, W., Dyer, M., J., Vargas-Pabón, M., Ott, G., Rosenwald, A., Siebert, R., López-Guillermo, 



A., Campo, E. & Beà, S. (2012) Non-nodal type of mantle cell lymphoma isa specific biological and 

clinical subgroup of the disease. Leukemia 26(8):1895–8 

  

Rudolph, C., Steinemann, D., Von Neuhoff, N., Gadzicki, D., Ripperger, T., Drexler, H., G., Mrasek, 

K., Liehr, T., Claussen, U., Emura, M., Schrock, E. & Schlegelberger, B. (2004) Molecular 

cytogenetic characterization of the mantle cell lymphoma cell line GRANTA-519. Cancer Genet 

Cytogenet 153(2):144-50. 

 

Saglam, O., Dai, F., Husain, S., Zhan, Y., Toruner, G. & Haines, G. K. (2014) Matricellular protein 

CCN1 (CYR61) expression is associated with high-grade ductal carcinoma in situ. Hum Pathol 45 

(6):1269-1275. 

 

Samaniego, F., Sehgal, L., Braun, F., K., Berkova, Z., Romaguera, J., E., Wang, M., Rodriguez, A., 

Neelapu, S., S. & Mathur, R. (2014) Molecular Signatures of Tumor-Initiating Cells Unveil Wnt 

Pathway As a Therapeutic Target in Mantle Cell Lymphoma. Blood 2014 124:2148. 

Sawai, K., Mukoyama, M., Mori, K., Kasahara, M., Koshikawa, M., Yokoi, H., Yoshioka, T., Ogawa, 

Y., Sugawara, A. & Nishiyama, H. (2007) Expression of CCN1 (CYR61) in developing, normal, and 

diseased human kidney. Am J Physiol Renal Physiol 293 (4):F1363-F1372. 

 

Si, W., Kang, Q., Luu, H. H., Park, J. K., Luo, Q., Song, W.-X., Jiang, W., Luo, X., Li, X. & Yin, H. 

(2006) CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-

induced osteoblast differentiation of mesenchymal stem cells. Mol Cell Biol 26 (8):2955-2964. 

 

Smith, M. R. (2011) Should there be a standard therapy for mantle cell lymphoma?. Future Oncol 7 

(2):227-237. 

 

Sohn, D., Essmann, F., Schulze-Osthoff, K. & Jänicke, R. U. (2006) p21 blocks irradiation-induced 

apoptosis downstream of mitochondria by inhibition of cyclin-dependent kinase–mediated caspase-9 

activation. Cancer Res 66 (23):11254-11262. 

 

Sun, Z., Wang, Y., Cai, Z., Chen, P., Tong, X. & Xie, D. (2008) Involvement of Cyr61 in growth, 

migration, and metastasis of prostate cancer cells. Br J Cancer 99 (10):1656-1667. 

 

Swerdlow, S., H., Campo, E., Pileri, S., A., Harris, N., L., Stein, H., Siebert, R., Advani, R., 

Ghielmini, M., Salles, G., A., Zelenetz, A., D. & Jaffe, E., S. (2016) The 2016 revision of the World 

Health Organization classification of lymphoid neoplasms. Blood 19; 127(20): 2375–2390. 

 

Tamura, I., Rosenbloom, J., Macarak, E., Chaqour, B. (2001) Regulation of Cyr61 gene expression by 

mechanical stretch through multiple signaling pathways. Am J Physiol Cell Physiol 281:C1524-1532.   

 

Thompson, K., Murphy-Marshman, H. & Leask, A. (2014) ALK5 inhibition blocks TGFβ-induced 

CCN1 expression in human foreskin fibroblasts. J Cell Commun Signal 8 (1):59-63. 



 

Timmerbeul, I., Garrett-Engele, C. M., Kossatz, U., Chen, X., Firpo, E., Grünwald, V., Kamino, K., 

Wilkens, L., Lehmann, U. & Buer, J. (2006) Testing the importance of p27 degradation by the 

SCFskp2 pathway in murine models of lung and colon cancer. Proc Natl Acad Sci 103 (38):14009-

14014. 

 

Todorovicç, V., Chen, C.-C., Hay, N. & Lau, L. F. (2005) The matrix protein CCN1 (CYR61) induces 

apoptosis in fibroblasts. J Cell Biol 171 (3):559-568. 

 

Tong, X., O'Kelly, J., Xie, D., Mori, A., Lemp, N., McKenna, R., Miller, C. W. & Koeffler, H. P. 

(2004) Cyr61 suppresses the growth of non-small-cell lung cancer cells via the β-catenin–c-myc–p53 

pathway. Oncogene 23 (28):4847-4855. 

 

Tong, X., Xie, D., O'Kelly, J., Miller, C. W., Muller-Tidow, C. & Koeffler, H. P. (2001) Cyr61, a 

member of CCN family, is a tumor suppressor in non-small cell lung cancer. J Biol Chem 276 

(50):47709-47714. 

 

Toyoshima, H. & Hunter, T. (1994) p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is 

related to p21. Cell 78 (1):67-74. 

 

Tucker, C. A., Bebb, G., Klasa, R. J., Chhanabhai, M., Lestou, V., Horsman, D. E., Gascoyne, R. D., 

Wiestner, A., Masin, D. & Bally, M. (2006) Four human t (11; 14)(q13; q32)-containing cell lines 

having classic and variant features of mantle cell lymphoma. Leukemia Res 30 (4):449-457. 

 

Waga, S., Hannon, G. J., Beach, D. & Stillman, B. (1994) The p21 inhibitor of cyclin-dependent 

kinases controls DNA replication by interaction with PCNA. Nature 369 (6481):574-578. 

 

Wells, J., Howlett, M., Cheung, L. & Kees, U. R. (2015) The role of CCN family genes in 

haematological malignancies. J Cell commun Signal 9 (3):267-278. 

 

Xie, D., Yin, D., Tong, X., O’Kelly, J., Mori, A., Miller, C., Black, K., Gui, D., Said, J. W. & 

Koeffler, H. P. (2004a) Cyr61 is overexpressed in gliomas and involved in integrin-linked kinase-

mediated Akt and β-catenin-TCF/Lef signaling pathways. Cancer Res 64 (6):1987-1996. 

 

Xie, D., Yin, D., Wang, H.-J., Liu, G.-T., Elashoff, R., Black, K. & Koeffler, H. P. (2004b) Levels of 
expression of CYR61 and CTGF are prognostic for tumor progression and survival of individuals 

with gliomas. Clin Cancer Res 10 (6):2072-2081. 

 

Yakubenko, V. P., Yadav, S. P. & Ugarova, T. P. (2006) Integrin α D β 2, an adhesion receptor up-

regulated on macrophage foam cells, exhibits multiligand-binding properties. Blood 107 (4):1643-

1650. 

 

Zhang, L., Schafer, P., Muller, G., Stirling, D. & Bartlett, B. (2008) The ratio of cyclin D1/p21kip 
baseline gene expression and SPARC gene expression can be potential predictors of non-Hodgkin's 



lymphoma (NHL) patient response to lenalidomide therapy. J Clinic Onco 26 (15_suppl):22150-

22150. 

Zhang, Y. & Yan, B. (2012) Cell cycle regulation by carboxylated multiwalled carbon nanotubes 

through p53-independent induction of p21 under the control of the BMP signaling pathway. Chem 

Res Toxicol 25 (6):1212-1221. 

 

Zhao, H., Faltermeier, C. M., Mendelsohn, L., Porter, P. L., Clurman, B. E. & Roberts, J. M. (2014) 

Mislocalization of p27 to the cytoplasm of breast cancer cells confers resistance to anti-HER2 

targeted therapy. Oncotarget 5 (24):12704. 

 

Zirbes, T. K., Baldus, S. E., Moenig, S. P., Nolden, S., Kunze, D., Shafizadeh, S. T., Schneider, P. M., 

Thiele, J., Hoelscher, A. H. & Dienes, H. P. (2000) Prognostic impact of p21/waf1/cip1 in colorectal 

cancer. Int J Cancer 89 (1):14-18. 

 

Zucca, E. & Bertoni, F. (2013) Toward new treatments for mantle-cell lymphoma?. N Engl J Med 369 

(6):571-572. 

 

  

  



Legends 

Figure 1 CCN1 expression in MCL progression. (A) RQ-PCR screen of MCL cell lines for 

CCN1 expression in normal peripheral blood (nPB), low-aggression phenotype (REC1) and 

in aggressive disease (G519 and JVM2). (B) Western blot showing CCN1 expression for the 

MCL cell lines, REC1, G519 and JVM2 (C) Optical densitometry for CCN1 band pattern by 

Western Blotting. (D) CCN1 domain structure of full length and potential truncated CCN1 

proteins adapted from Choi et al., 2013. GAPDH was used as a loading control, data 

generated were normalised against GAPDH control (n=3 independent samples) and (nPB, 

n=5 independent samples).     

 

Figure 2 Cyclin D1, p21 and p27 expression in MCL progression. RQ-PCR of cyclin 

D1 (A), p21 (D) and p27 (G) in MCL for REC1, G519 and JVM2 cells. Western blotting for 

expression of total protein for cyclin D1 (B), p21 (E) and p27 (H) in MCL for REC1, G519 

and JVM2 cells. Optical densitometry for western blotting of cyclin D1 (C), p21 (F) and 

p27 (I). Densitometry was performed on banding and data generated normalised against 

GAPDH loading control (n=3 independent replicates). 

 

Figure 3 Subcellular localisation of p21 and p27 in MCL. A Western blot for p21 cellular 

content for cytoplasmic, mitochondrial and nuclear fractions for REC1, G519 and JVM2 

cells.  B Western blot for p27 cellular content for cytoplasmic, mitochondrial and nuclear 

fractions for REC1, G519 and JVM2 cells. GAPDH, Histone 3 and COXIV were used as a 

loading control and to ensure clean fractions free from cross contamination during the 

fractionation process were obtained (n=3 independent samples). 
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