1,951 research outputs found

    Inflammatory Multiple-Sclerosis Plaques Generate Characteristic Metabolic Profiles in Cerebrospinal Fluid

    Get PDF
    International audienceBackgroundMultiple sclerosis (MS), an inflammatory disease of the central nervous system, manifests itself in numerous forms and stages. A number of brain metabolic alterations have been reported for MS patients vs. control subjects. However, metabolite profiles of cerebrospinal fluid (CSF) are not consistent among the published MS studies, most probably due to variations in the patient cohorts studied. We undertook the first investigation of highly homogeneous MS patient cohorts to determine characteristic effects of inflammatory MS plaques on the CSF metabolome, including only patients with clinically isolated syndrome (CIS) with or without inflammatory brain plaques, and controls.Methodology/Principal FindingsCSF obtained by lumbar puncture was analyzed by proton magnetic resonance spectroscopy. 27 metabolites were quantified. Differences between groups of control subjects (n = 10), CIS patients with (n = 21) and without (n = 12) inflammatory plaques were evaluated by univariate statistics and principal component analysis (PCA). Seven metabolites showed statistically significant inter-group differences (p<0.05). Interestingly, a significant increase in β-hydroxyisobutyrate (BHIB) was detected in CIS with vs. without active plaques, but not when comparing either CIS group with control subjects. Moreover, a significant correlation was found, for the first time, between CSF lactate concentration and the number of inflammatory MS brain plaques. In contrast, fructose concentrations were equally enhanced in CIS with or without active plaques. PCA based on all 27 metabolites yielded group-specific clusters.Conclusions/SignificanceCSF metabolic profiles suggest a close link between MS plaque activity in CIS patients on the one hand and organic-acid metabolism on the other. Our detection of increased BHIB levels points to a hitherto unsuspected role for this compound in MS with active plaques, and serves as a basis for further investigation. The metabolic effects described in our study are crucial elements in the explanation of biochemical mechanisms involved in specific MS manifestations

    Expression of Cell-Surface Marker ABCB5 Causes Characteristic Modifications of Glucose, Amino Acid and Phospholipid Metabolism in the G3361 Melanoma-Initiating Cell Line

    Get PDF
    We present a pilot study aimed at determining the effects of expression of ATP-binding cassette member B5 (ABCB5), a previously described marker for melanoma-initiating cells, on cellular metabolism. Metabolic profiles for two groups of human G3361 melanoma cells were compared, i.e. wildtype melanoma cells with intact ABCB5 expression (ABCB5-WT) and corresponding melanoma cell variants with inhibited ABCB5 expression, through shRNA-mediated gene knockdown (ABCB5-KD). A comprehensive metabolomic analysis was performed by using proton and phosphorus NMR spectroscopy of cell extracts to examine water-soluble metabolites and lipids. Parametric and non-parametric statistical analysis of absolute and relative metabolite levels yielded significant differences for compounds involved in glucose, amino acid and phospholipid (PL) metabolism. By contrast, energy metabolism was virtually unaffected by ABCB5 expression. The sum of water-soluble metabolites per total protein was 17% higher in ABCB5-WT vs. ABCB5-KD G3361 variants, but no difference was found for the sum of PLs. Enhanced abundance was particularly pronounced for lactate (+ 23%) and alanine (+ 26%), suggesting an increase in glycolysis and potentially glutaminolysis. Increases in PL degradation products, glycerophosphocholine and glycerophosphoethanolamine (+ 85 and 123%, respectively), and redistributions within the PL pool suggested enhanced membrane PL turnover as a consequence of ABCB5 expression. The possibility of glycolysis modulation by an ABCB5-dependent IL1β-mediated mechanism was supported by functional studies employing monoclonal antibody (mAb)-dependent ABCB5 protein inhibition in wildtype G3361 melanoma cells. Our metabolomic results suggest that the underlying biochemical pathways may offer targets for melanoma therapy, potentially in combination with other treatment forms

    [11C]-l-Methionine positron emission tomography in the management of children and young adults with brain tumors

    Get PDF
    Only a few Methyl-[11C]-l-methionine (MET) positron emission tomography (PET) studies have focused on children and young adults with brain neoplasm. Due to radiation exposure, long scan acquisition time, and the need for sedation in young children MET-PET studies should be restricted to this group of patients when a decision for further therapy is not possible from routine diagnostic procedures alone, e.g., structural imaging. We investigated the diagnostic accuracy of MET-PET for the differentiation between tumorous and non-tumorous lesions in this group of patients. Forty eight MET-PET scans from 39 patients aged from 2 to 21 years (mean 15 ± 5.0 years) were analyzed. The MET tumor-uptake relative to a corresponding control region was calculated. A receiver operating characteristic (ROC) was performed to determine the MET-uptake value that best distinguishes tumorous from non-tumorous brain lesions. A differentiation between tumorous (n = 39) and non-tumorous brain lesions (n = 9) was possible at a threshold of 1.48 of relative MET-uptake with a sensitivity of 83% and a specificity of 92%, respectively. A differentiation between high grade malignant lesions (mean MET-uptake = 2.00 ± 0.46) and low grade tumors (mean MET-uptake = 1.84 ± 0.31) was not possible. There was a significant difference in MET-uptake between the histologically homogeneous subgroups of astrocytoma WHO grade II and anaplastic astrocytoma WHO grade III (P = 0.02). MET-PET might be a useful tool to differentiate tumorous from non-tumorous lesions in children and young adults when a decision for further therapy is difficult or impossible from routine structural imaging procedures alone

    Volumetry of [11C]-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme

    Get PDF
    We investigated the relationship between three-dimensional volumetric data of the metabolically active tumour volume assessed using [(11)C]-methionine positron emission tomography (MET-PET) and the area of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) enhancement assessed using magnetic resonance imaging (MRI) in patients with recurrent glioblastoma (GBM).MET-PET and contrast-enhanced MRI with Gd-DTPA were performed in 12 uniformly pretreated patients with recurrent GBM. To calculate the volumes in cubic centimetres, a threshold-based volume-of-interest (VOI) analysis of the metabolically active tumour volume (MET uptake indexes of > or = 1.3 and > or = 1.5) and of the area of Gd-DTPA enhancement was performed after coregistration of all images.In all patients, the metabolically active tumour volume as shown using a MET uptake index of > or = 1.3 was larger than the volume of Gd-DTPA enhancement (30.2 + or - 22.4 vs. 13.7 + or - 10.6 cm(3); p = 0.04). Metabolically active tumour volumes as shown using MET uptake indexes of > or =1.3 and > or = 1.5 and the volumes of Gd-DTPA enhancement showed a positive correlation (r = 0.76, p = 0.003, for an index of > or =1.3, and r = 0.74, p = 0.005, for an index of > or =1.5).The present data suggest that in patients with recurrent GBM the metabolically active tumour volume may be substantially underestimated by Gd-DTPA enhancement. The findings support the notion that complementary information derived from MET uptake and Gd-DTPA enhancement may be helpful in developing individualized, patient-tailored therapy strategies in patients with recurrent GBM

    Stochastic Modeling of B Lymphocyte Terminal Differentiation and Its Suppression by Dioxin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Upon antigen encounter, naïve B lymphocytes differentiate into antibody-secreting plasma cells. This humoral immune response is suppressed by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other dioxin-like compounds, which belong to the family of aryl hydrocarbon receptor (AhR) agonists.</p> <p>Results</p> <p>To achieve a better understanding of the immunotoxicity of AhR agonists and their associated health risks, we have used computer simulations to study the behavior of the gene regulatory network underlying B cell terminal differentiation. The core of this network consists of two coupled double-negative feedback loops involving transcriptional repressors Bcl-6, Blimp-1, and Pax5. Bifurcation analysis indicates that the feedback network can constitute a bistable system with two mutually exclusive transcriptional profiles corresponding to naïve B cells and plasma cells. Although individual B cells switch to the plasma cell state in an all-or-none fashion when stimulated by the polyclonal activator lipopolysaccharide (LPS), stochastic fluctuations in gene expression make the switching event probabilistic, leading to heterogeneous differentiation response among individual B cells. Moreover, stochastic gene expression renders the dose-response behavior of a population of B cells substantially graded, a result that is consistent with experimental observations. The steepness of the dose response curve for the number of plasma cells formed vs. LPS dose, as evaluated by the apparent Hill coefficient, is found to be inversely correlated to the noise level in Blimp-1 gene expression. Simulations illustrate how, through AhR-mediated repression of the AP-1 protein, TCDD reduces the probability of LPS-stimulated B cell differentiation. Interestingly, stochastic simulations predict that TCDD may destabilize the plasma cell state, possibly leading to a reversal to the B cell phenotype.</p> <p>Conclusion</p> <p>Our results suggest that stochasticity in gene expression, which renders a graded response at the cell population level, may have been exploited by the immune system to launch humoral immune response of a magnitude appropriately tuned to the antigen dose. In addition to suppressing the initiation of the humoral immune response, dioxin-like compounds may also disrupt the maintenance of the acquired immunity.</p

    The origins and spread of domestic horses from the Western Eurasian steppes

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: All collapsed and paired-end sequence data for samples sequenced in this study are available in compressed fastq format through the European Nucleotide Archive under accession number PRJEB44430, together with rescaled and trimmed bam sequence alignments against both the nuclear and mitochondrial horse reference genomes. Previously published ancient data used in this study are available under accession numbers PRJEB7537, PRJEB10098, PRJEB10854, PRJEB22390 and PRJEB31613, and detailed in Supplementary Table 1. The genomes of ten modern horses, publicly available, were also accessed as indicated in their corresponding original publications57,61,85-87.NOTE: see the published version available via the DOI in this record for the full list of authorsDomestication of horses fundamentally transformed long-range mobility and warfare. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling at Botai, Central Asia around 3500 BC. Other longstanding candidate regions for horse domestication, such as Iberia and Anatolia, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 BC, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 BC driving the spread of Indo-European languages. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium BC Sintashta culture

    Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores

    Get PDF
    Funder: Funder: Fundación bancaria ‘La Caixa’ Number: LCF/PR/PR16/51110003 Funder: Grifols SA Number: LCF/PR/PR16/51110003 Funder: European Union/EFPIA Innovative Medicines Initiative Joint Number: 115975 Funder: JPco-fuND FP-829-029 Number: 733051061Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
    corecore