17 research outputs found

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Mitochondrial genomes of the bird genus Piranga: rates of sequence evolution, and discordance between mitochondrial and nuclear markers

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.We report the characteristics of the mitochondrial genomes of 22 individuals in the bird genus Piranga, including all currently recognized species in the genus (n = 11). Elements follow the standard avian mitogenome series, including two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, 13 protein coding genes, and the mitochondrial control region. Excluding tRNA sequences, sequence divergence rate was lowest in rRNA genes and highest in genes encoding NADH (specifically ND1, ND2, ND3) and the control region. Gene trees assembled from 16 elements (non-tRNAs) varied greatly in topological concordance compared to the recognized species tree (based on thousands of nuclear loci), with no one gene tree precisely recovering all relationships in the genus. We also investigated patterns of concordance between the mitogenome tree and the nuclear species tree and found some discrepancies. Across non-tRNA gene trees (n = 16), the species tree topology was recovered by as few as three elements at a particular node and complete concordance (i.e. 16/16 gene trees matched the species tree topology) was recovered at only one node. We found mitochondrial gene regions that are often used in vertebrate systematics (e.g. CytB, ND2) recovered nearly the exact same topology as the nuclear species tree topology

    Data from: Genomic data resolves gene tree discordance in spiderhunters (Nectariniidae, Arachnothera)

    No full text
    Reduced representation genomic sequencing methods efficiently gather sequence data from thousands of loci throughout the genome. These data can be used to test previous phylogenetic hypotheses produced from limited numbers of mitochondrial and nuclear loci that often reveal intriguing, but conflicting results. In this paper, we use phylogenomic data to revisit recent molecular phylogenetic work that clarified many taxonomic relationships within spiderhunters, but also questioned monophyly of this distinctive genus of sunbirds (AVES: Nectariniidae; Arachnothera). DNA sequence data were produced by target-capture sequencing of ultraconserved elements (UCEs) to infer the evolutionary history of 11 species of Arachnothera and six outgroups, including the Purple-naped Sunbird (Hypogramma hypogrammicum), which previous work suggested might lie within Arachnothera. Although we recovered many different gene tree topologies, concatenated and coalescent methods of analysis converged on a species tree that strongly supports the monophyly of Arachnothera, with Hypogramma as its sister taxon

    Data from: Comparison of target-capture and restriction-site associated DNA sequencing for phylogenomics: a test in cardinalid tanagers (Aves, genus: Piranga)

    No full text
    Restriction-site associated DNA sequencing (RAD-seq) and target capture of specific genomic regions, such as ultraconserved elements (UCEs), are emerging as two of the most popular methods for phylogenomics using reduced-representation genomic datasets. These two methods were designed to target different evolutionary timescales: RAD-seq was designed for population-genomic level questions and UCEs for deeper phylogenetics. The utility of both datasets to infer phylogenies across a variety of taxonomic levels has not been adequately compared within the same taxonomic system. Additionally, the effects of uninformative gene trees on species tree analyses (for target capture data) have not been explored. Here, we utilize RAD-seq and UCE data to infer a phylogeny of the bird genus Piranga. The group has a range of divergence dates (0.5 my – 6 my), contains eleven recognized species, and lacks a resolved phylogeny. We compared two species tree methods for the RAD-seq data and six species tree methods for the UCE data. Additionally, in the UCE data, we analyzed a complete matrix as well as datasets with only highly informative loci. A complete matrix of 189 UCE loci with ten or more parsimony informative (PI) sites, and an ~80% complete matrix of 1128 PI SNPs (from RAD-seq) yield the same fully resolved phylogeny of Piranga. We inferred non-monophyletic relationships of P. lutea individuals, with all other a priori species identified as monophyletic. Finally, we found that species tree analyses that included predominantly uninformative gene trees provided strong support for different topologies, with consistent phylogenetic results when limiting species tree analyses to highly informative loci or only using less informative loci with concatenation or methods meant for SNPs alone

    Genomic differentiation in an endemic Philippine genus (Aves:Sarcophanops) owing to geographical isolation on recently disassociated islands

    No full text
    Phylogeographical studies of Philippine vertebrates have demonstrated that genetic variation is broadly partitioned by Pleistocene island aggregation. Contemporary island discontinuity is expected to influence genetic differentiation but remains relatively undocumented, perhaps because the current episode of island isolation started in relatively recent times. We investigated inter- and intra-island population structure in a Philippine endemic bird genus (Sarcophanops) to determine whether genetic differentiation has evolved during the recent period of isolation. We sequenced thousands of genome-wide restriction site associated DNA (RAD) markers from throughout the Mindanao group to assess fine-scale genetic structure across islands. Specifically, we investigated patterns of gene flow and connectivity within and between taxonomic and geographical bounds. A previous assessment of mitochondrial DNA detected deep structure between Sarcophanops samarensis and a sister species, Sarcophanops steerii, but was insufficient to detect differentiation within either species. Analysis of RAD markers, however, revealed structure within S. samarensis between the islands of Samar/Leyte and Bohol. This genetic differentiation probably demonstrates an effect of recent geographical isolation (after the Last Glacial Maximum) on the genetic structure of Philippine avifauna. We suggest that the general lack of evidence for differentiation between recently isolated populations is a failure to detect subtle population structure owing to past genetic sampling constraints, rather than the absence of such structure

    raxml_genetree

    No full text
    This directory contains a subdirectory for each UCE locus, and within each subdirectory is the bestTree gene tree for that locus. Trees were produced in RAxML, using a GTR+Gamma substitution model

    UCE_phylip

    No full text
    This directory contains a phylip file for each locus in the complete UCE data matrix (n = 2,107 UCE loci). Each file contains aligned sequence data for that UCE locus in phylip format. Taxon names have been shortened to first three letters of genus and first three of the specific epithet (e.g., Arachnothera longirostra = AraLon
    corecore