95 research outputs found

    Categorizing facial creases: A review

    Get PDF
    Ensuring uniformity in the nomenclature standardization of facial creases is important to enable the scholarly community to follow and debate the advancements in research. This review highlights the prevailing disparity in the nomenclature that refers to the same facial crease by researchers and laypeople, and suggests uniform names for the facial creases based on available literature. The previous and current trends in facial crease classification are also discussed. The nomenclature of the facial creases considered for this review include the following: the nasolabial fold, corner of the mouth lines, upper and lower lip creases around the mouth region, the mandibular folds, the bifid nose, the transverse nasal line, the vertical glabellar line, chin crease, the mental crease, four type of creases around the eyes, forehead creases, and periauricular creases. A figure illustrating the above facial creases is included as reference. It is hoped that the proposed standardization of nomenclature would ensure a more scientific referencing of facial creases enabling more effective scientific interaction among the scholarly community as well as the laypeople interested in the research and application of facial creases

    Automatic Wrinkle Detection Using Hybrid Hessian Filter

    Get PDF
    Aging as a natural phenomenon affects different parts of the human body under the influence of various biological and environmental factors. The most pronounced changes that occur on the face is the appearance of wrinkles, which are the focus of this research. Accurate wrinkle detection is an important task in face analysis. Some have been proposed in the literature, but the poor localization limits the performance of wrinkle detection. It will lead to false wrinkle detection and consequently affect the processes such as age estimation and clinician score assessment. Therefore, we propose a hybrid Hessian filter (HHF) to cope with the identified problem. HHF is composed of the directional gradient and Hessian matrix. The proposed filter is conceptually simple, however, it significantly increases the true wrinkle localization when compared with the conventional methods. In the experimental setup, three coders have been instructed to annotate the wrinkle of 2D forehead image manually. The inter-reliability among three coders is 93 % of Jaccard similarity index (JSI). In comparison to the state-of-the-art Cula method (CLM) and Frangi filter, HHF yielded the best result with a mean JSI of 75.67 %. We noticed that the proposed method is capable of detecting the medium to coarse wrinkle but not the fine wrinkle. Although there is a gap between human annotation and automated detection, this work demonstrates that HHF is a remarkably strong filter for wrinkle detection. From the experimental results, we believe that our findings are notable in terms of the JSI

    The poly-omics of ageing through individual-based metabolic modelling

    Get PDF
    Abstract Background Ageing can be classified in two different ways, chronological ageing and biological ageing. While chronological age is a measure of the time that has passed since birth, biological (also known as transcriptomic) ageing is defined by how time and the environment affect an individual in comparison to other individuals of the same chronological age. Recent research studies have shown that transcriptomic age is associated with certain genes, and that each of those genes has an effect size. Using these effect sizes we can calculate the transcriptomic age of an individual from their age-associated gene expression levels. The limitation of this approach is that it does not consider how these changes in gene expression affect the metabolism of individuals and hence their observable cellular phenotype. Results We propose a method based on poly-omic constraint-based models and machine learning in order to further the understanding of transcriptomic ageing. We use normalised CD4 T-cell gene expression data from peripheral blood mononuclear cells in 499 healthy individuals to create individual metabolic models. These models are then combined with a transcriptomic age predictor and chronological age to provide new insights into the differences between transcriptomic and chronological ageing. As a result, we propose a novel metabolic age predictor. Conclusions We show that our poly-omic predictors provide a more detailed analysis of transcriptomic ageing compared to gene-based approaches, and represent a basis for furthering our knowledge of the ageing mechanisms in human cells

    Cryolipolysis for noninvasive body contouring: clinical efficacy and patient satisfaction

    No full text
    Nils Krueger,1 Sophia V Mai,2 Stefanie Luebberding,1 Neil S Sadick3 1Rosenpark Research, Darmstadt, Germany; 2Department of Dermatology, Louisiana State University, New Orleans, LA, 3Department of Dermatology, Weill Cornell Medical College, New York, NY, USA Abstract: In recent years, a number of modalities have become available for the noninvasive reduction of adipose tissue, including cryolipolysis, radiofrequency, low-level laser, and high-intensity focused ultrasound. Each technology employs a different mechanism of action to cause apoptosis or necrosis of the targeted adipocytes. Among these technologies, cryolipolysis has not only been commercially available for the longest time, but has also been best researched including in vitro and animal models and randomized controlled clinical trials in humans. The principle behind cryolipolysis exploits the premise that adipocytes are more susceptible to cooling than other skin cells. The precise application of cold temperatures triggers apoptosis of the adipocytes, which invokes an inflammatory response and leads to slow digestion by surrounding macrophages. In clinical studies, cryolipolysis was shown to reduce subcutaneous fat at the treatment site by up to 25% after one treatment. Improvements were seen in 86% of treated subjects. At 73%, the patient satisfaction rate is higher than with other technologies used for noninvasive lipolysis. Cryolipolysis has been proven to be a very safe method for body contouring, and is accomplished with only minimal discomfort. Expected side effects are temporary erythema, bruising, and transient numbness that usually resolve within 14 days after treatment. With a prevalence of 0.1%, the most common complaint is late-onset pain, occurring 2 weeks post-procedure, which resolves without intervention. Although no procedure has been accepted as the gold standard for noninvasive body contouring as yet, cryolipolysis is considered to be both safe and efficient with a high patient satisfaction rate. Keywords: cryolipolysis, nonsurgical fat reduction, body contouring, patient satisfaction, patient safet
    corecore