390 research outputs found

    Utah Farmers Market SNAP Toolkit

    Get PDF
    Utah State University Extension provides research-based programs and resources with the goal of improving the lives of individuals, families and communities throughout Utah. USU Extension manages Create Better Health, Utah’s Supplemental Nutrition Assistance Education Program (known as SNAP-Ed), and provides nutrition education and obesity prevention services to SNAP recipients and other eligible low-income individuals. Create Better Health (SNAP-Ed) offers a variety of classes to expand participants’ knowledge of nutrition, budgeting, cooking, food safety, and physical activity. This toolkit outlines how farmers markets can implement a SNAP program and help combat food insecurity in their communities

    Power Quality Analysis in Off-Grid Power Platform

    Get PDF

    Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions

    Full text link

    Numerically simulated exposure of children and adults to pulsed gradient fields in MRI

    Get PDF
    PurposeTo determine exposure to gradient switching fields of adults and children in a magnetic resonance imaging (MRI) scanner by evaluating internal electric fields within realistic models of adult male, adult female, and child inside transverse and longitudinal gradient coils, and to compare these results with compliance guidelines. Materials and MethodsPatients inside x-, y-, and z-gradient coils were simulated using anatomically realistic models of adult male, adult female, and child. The induced electric fields were computed for 1 kHz sinusoidal current with a magnitude of 1 A in the gradient coils. Rheobase electric fields were then calculated and compared to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2004 and International Electrotechnical Commission (IEC) 2010 guidelines. The effect of the human body, coil type, and skin conductivity on the induced electric field was also investigated. ResultsThe internal electric fields are within the first level controlled operating mode of the guidelines and range from 2.7V m(-1) to 4.5V m(-1), except for the adult male inside the y-gradient coil (induced field reaches 5.4V m(-1)).The induced electric field is sensitive to the coil type (electric field in the skin of adult male: 4V m(-1), 4.6V m(-1), and 3.8V m(-1) for x-, y-, and z-gradient coils, respectively), the human body model (electric field in the skin inside y-gradient coil: 4.6V m(-1), 4.2V m(-1), and 3V m(-1) for adult male, adult female, and child, respectively), and the skin conductivity (electric field 2.35-4.29% higher for 0.1S m(-1) skin conductivity compared to 0.2S m(-1)). ConclusionThe y-gradient coil induced the largest fields in the patients. The highest levels of internal electric fields occurred for the adult male model. J. Magn. Reson. Imaging 2016;44:1360-1367

    Study of Temperature Characteristics of Micromachined Suspended Coplanar Waveguides for Biosensing Applications

    Get PDF
    In the recent development on biosensors, coplanar waveguide based microwave dielectric sensors have been attracting more and more attentions. In this paper, microwave performance of a suspended coplanar waveguide subject to temperature variations, particularly in a small range, is studied. The prototype is realized through a MEMS fabrication foundry. The thermal transfer analysis of the device is conducted using finite element method, and the microwave properties of the device are characterized. One of the results shows that at 20 GHz, the S11 has decreased by 7.4%, and S21 has increased by 3.5% when the voltage applied to the heaters varies from 9 V to 29 V

    Challenges in the Design of Microwave Imaging Systems for Breast Cancer Detection

    Get PDF
    Among the various breast imaging modalities for breast cancer detection, microwave imaging is attractive due to the high contrast in dielectric properties between the cancerous and normal tissue. Due to this reason, this modality has received a significant interest and attention from the microwave community. This paper presents the survey of the ongoing research in the field of microwave imaging of biological tissues, with major focus on the breast tumor detection application. The existing microwave imaging systems are categorized on the basis of the employed measurement concepts. The advantages and disadvantages of the implemented imaging techniques are discussed. The fundamental tradeoffs between the various system requirements are indicated. Some strategies to overcome these limitations are outlined

    Lack of Teratological Effects in Rats Exposed to 20 or 60 kHz Magnetic Fields

    Get PDF
    BACKGROUND: A risk assessment of magnetic field (MF) exposure conducted by the World Health Organization indicated the need for biological studies on primary hazard identification and quantitative risk evaluation of intermediate frequency (300 Hz–100 kHz) MFs. Because induction heating cookers generate such MFs for cooking, reproductive and developmental effects are a concern due to the close proximity of the fields' source to a cook's abdomen. METHODS: Pregnant Crl:CD(SD) rats (25/group) were exposed to a 20 kHz, 0.2 mT(rms) or 60 kHz, 0.1 mT(rms) sinusoidal MF or sham-exposed for 22 hr/day during organogenesis, and their fetuses were examined for malformations on gestation day 20. All teratological evaluations were conducted in a blind fashion, and experiments were duplicated for each frequency to confirm consistency of experimental outcomes. RESULTS: No exposure-related changes were found in clinical signs, gross pathology, or number of implantation losses. The number of live fetuses and low-body-weight fetuses as well as the incidence of external, visceral, and skeletal malformations in the fetuses did not indicate significant differences between MF-exposed and sham-exposed groups. Although some fetuses showed isolated changes in sex ratio and skeletal variation and ossification, such changes were neither reproduced in duplicate experiments nor were they common to specific field frequencies. CONCLUSIONS: Exposure of rats to MFs during organogenesis did not show significant reproducible teratogenicity under experimental conditions. Present findings do not support the hypothesis that intermediate frequency MF exposure after implantation carries a significant risk for developing mammalian fetuses. Birth Defects Res (Part B) 92:469–477, 2011. © 2011 Wiley Periodicals, Inc
    • …
    corecore