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Abstract

Background. Ageing can be classified in two different ways, chronological
ageing and biological ageing. While chronological age is a measure of the time
that has passed since birth, biological (also known as transcriptomic) ageing is
defined by how time and the environment affect an individual in comparison to
other individuals of the same chronological age. Recent research studies have
shown that transcriptomic age is associated with certain genes, and that each of
those genes has an effect size. Using these effect sizes we can calculate the
transcriptomic age of an individual from their age-associated gene expression
levels. The limitation of this approach is that it does not consider how these
changes in gene expression affect the metabolism of individuals and hence their
observable cellular phenotype.

Results. We propose a method based on poly-omic constraint-based models
and machine learning in order to further the understanding of transcriptomic
ageing. We use normalised CD4 T-cell gene expression data from peripheral
blood mononuclear cells in 499 healthy individuals to create individual metabolic
models. These models are then combined with a transcriptomic age predictor and
chronological age to provide new insights into the differences between
transcriptomic and chronological ageing. As a result, we propose a novel
metabolic age predictor.

Conclusions. We show that our poly-omic predictors provide a more detailed
analysis of transcriptomic ageing compared to gene-based approaches, and
represent a basis for furthering our knowledge of the ageing mechanisms in
human cells.

Keywords: Ageing; Biological age; Metabolic age; Metabolic modelling; Flux
balance analysis; Poly-omics; Machine learning; CD4 T-cells

Introduction
Ageing is a complex process characterised by phenotypes such as greying hair and

wrinkles, as well as age-associated diseases such as cancer, osteoarthritis and cardio-

vascular disease. Phenotypes of ageing and age-associated diseases can be linked to

age-associated changes in metabolic subsystems [1–3]. Identifying these metabolic

links has recently led to the discovery of age-associated biomarkers [4, 5].

There are many different theories of the underlying mechanisms of ageing, in-

cluding the mitochondrial theory of ageing, accumulation of metabolic by-products

and dysregulation of regulatory pathways. The mitochondrion is the primary or-
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ganelle responsible for metabolic cellular respiration; it takes in oxygen and nutri-

ents and converts them into energy in the form of adenosine triphosphate (ATP).

The mitochondrial theory of ageing states that oxidative damage caused by reac-

tive oxygen species (ROS) produced by the mitochondria contributes to ageing by

causing damage to mitochondrial DNA, lipids and proteins, which ultimately leads

to cell death [6, 7]. Mitochondrial dysfunction and oxidative damage have been

linked to age-associated neurodegenerative disorders such as Alzheimer’s disease,

Parkinson’s disease and Huntington’s disease [8, 9], as well as to the pathogenesis

of cancer [10,11].

Metabolism is increasingly being considered as a driver, rather than a marker, of

the ageing process [12]. Three examples of metabolic by-products linked with age-

ing are amyloid proteins, advanced glycation end-products (AGEs) and lipofuscin.

Accumulation of amyloid proteins in the central nervous system is associated with

neurodegenerative disease in ageing [13,14]; for instance, β-amyloid plaques in brain

tissue are linked with the pathogenesis of Alzheimer’s disease [15,16]. AGEs can be

ingested in foods or formed in the body by non-enzymatic glycation of lipids, nucleic

acids and proteins, and their accumulation is thought to contribute to the ageing

process [17, 18]. AGEs are formed when foods are processed at high temperatures

such as deep-frying, grilling and roasting. They can increase oxidative stress, upreg-

ulate inflammation, and form cross-links with proteins [19], which cause impaired

elasticity to blood vessels, therefore leading to poor heart health [20,21]. Upregula-

tion of inflammation caused by AGEs has been also linked to cancer [22–24]. Eating

raw foods or foods cooked at lower temperatures can help to reduce dietary intake

of AGEs [17]. Lipofuscin is a non-degradable metabolic by-product that builds up

in lysosomes with time, and has been associated with age-related cellular degener-

ation [25], particularly macular degeneration [26].

One important example of the dysregulation of regulatory pathways as we age is

chronic inflammation. The term ’inflammaging’ was proposed by Franceschi et al.

[27] to describe the imbalance between pro- and anti-inflammatory networks, which

contributes to the chronic diseases of ageing. The function of the immune system

declines as we age, leading to increased susceptibility to infectious diseases such as

influenza [28], as well as decreased response to vaccinations against them [29]. This

decline in function has been reported in CD4 T-cells [30,31], which are used in this

study, along with changes in the ageing transcriptome [32].

Age can be defined as chronological or transcriptomic/biological. Chronological

age is a measure of the time that has passed since our birth, whereas transcrip-

tomic age represents the difference in how time and the environment have affected

the cells and organs of our body as compared to others of the same chronological

age. Our transcriptomic age can therefore be older or younger than our chronolog-

ical age. Until now, transcriptomic age has been calculated for individuals using

transcriptomic-only data [33].

The limitation of this approach is that it does not take into account how age-

associated gene expression affects the metabolism within cells and thus their observ-

able cellular phenotype. This paper aims to improve on the current understanding

of ageing (based on transcriptomics data alone) by modelling how age-associated

gene expression changes metabolic processes, therefore enabling the identification

of metabolic age predictors, selected using machine learning techniques.
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Metabolic models have proven to be valuable computational tools to study

metabolism, as they allow predicting phenotypes from genotypes. By modelling

most of the known biochemistry of a cell, they allow achieving a mechanistic under-

standing of the genotype-phenotype relationship. Coupled with tools for integration

of omics data, metabolic models have been successfully exploited in a wide range

of applications in health and disease, including personalised, condition- and tissue-

specific cancer modelling [34–37].

Gene expression data and other types of omics-derived data can be used to

constrain metabolic models for phenotype prediction [38]. The process of linking

metabolic networks to phenotypes enables a better prediction of cellular phenotype

compared to predictions from gene expression alone [39]. Exploiting this idea to

generate a poly-omic model of ageing, we first generate individual-based genome-

scale metabolic models and the associated fluxomic profiles. Specifically, we use

CD4 T-cell transcriptomics data to modify a constraint-based metabolic model and

achieve the predicted flux distributions (fluxomic profiles) for each individual in

the cohort. Then, we adapt machine learning techniques in order to investigate

metabolic changes linked to the chronological age of the individuals. We compare

transcriptomic- and fluxomic-based clustering with chronological age and find that

metabolic models are a better predictor of chronological age [40].

Our poly-omic pipeline also enables us to identify metabolic biomarkers of ageing,

which are validated by recent literature, and to obtain metabolic age predictors. As

a result, we build a metabolic age predictor capable of calculating the metabolic

ages of individuals. Although a small number of metabolomics biomarkers have

been proposed [41], to our knowledge this is the first time genome-scale predictors

have been identified. We conclude that moving towards a poly-omic understanding

of biological ageing can help provide a more accurate prediction of biological age,

therefore leading to more targeted therapies for ageing individuals in a variety of

environmental and physiological conditions.

Methods
The poly-omic ageing pipeline

Our pipeline starts from a meta-analysis of CD4 T-cell data containing the gene

expression levels from human peripheral blood mononuclear cells and the chrono-

logical ages of 499 healthy individuals in the Boston area, comprised of 294 females

and 205 males [42]. As the CD4 T-cell expression data was profiled on Affymetrix

Human Gene 1.0 ST microarrays, it was first normalised using RMA (Robust Multi-

array Average) [43]. In absence of a control profile, the gene expression values were

then divided by the mean value for their associated probe. Using this normalised

gene expression data, the transcriptomic ages for all 499 individuals were calculated

as described in the next subsection (formulas (1) and (2)).

Having obtained the transcriptomic ages, we then used individuals’ transcrip-

tomic data to generate their personalised CD4 T-cell metabolic models. These were

created using constraint based modelling of the CD4 T-cell [44] augmented with

transcriptomics through GEMsplice [45], by setting individual constraints on the

CD4 model (see the following subsections on constraint-based modelling for details

on how the mapping was achieved). On the personalised models, we finally adapted
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a set of statistical and machine learning methods based on clustering, PCA analysis

and elastic net regression to identify metabolic predictors of ageing. Our pipeline

thus enabled us to progress to a poly-omic understanding of ageing in human cells

(Figure 1; see also the following subsections for details on the modelling approach

adopted in this manuscript).

Transcriptomic age predictor

The transcriptomic age of an individual within a sample can be calculated by first

obtaining their transcriptomic predictor, Z, using the gene expression levels of 1497

age-associated genes (i.e. those found to be differentially expressed with chronolog-

ical age). This is achieved through a linear combination of the expression levels,

where coefficients are their associated effect sizes [33]:

Z =
∑
i

bixi, (1)

where xi is the gene expression level of the ith probe, and bi is the effect size for the

ith probe. Effect sizes were associated with individual genes, whereas the original

data contained gene expression data associated with probes. Therefore, where a

probe was mapped to more than one age-associated gene, the effect sizes for those

genes were averaged to give an overall average effect size bi for that probe.

The transcriptomic predictor for each individual is then scaled using the mean and

standard deviation of the chronological ages, and the mean and standard deviation

of the transcriptomic predictors from all the individuals in the sample [33]. This

allows defining the transcriptomic age of an individual:

SZ = µage + (Z − µZ)
σage
σZ

, (2)

where µage and σage are the mean and the standard deviation of the chronological

age across all the individuals within the sample, while µZ and σZ are the mean and

the standard deviation of the predictor Z across all the individuals in the sample.

Constraint-based modelling to generate individual-based metabolic models

Metabolic models can be analysed using constraint-based modelling and flux bal-

ance analysis (FBA, the most widely-used technique to simulate metabolic models

at steady state [46]), to enable predictions of the distribution of reaction flux rates

in the cell. Given the matrix S of all known metabolic biochemical reactions and

their stoichiometry, and given the vector v of reaction flux rates in a given growth or

physiological condition, the steady-state condition is set by the constraint Sv = 0.

Additional constraints are added on lower and upper bounds of v (vmin and vmax).

Constraints are included according to the growth or physiological condition that is

simulated; these can also be set taking into account multiple omics data (e.g. tran-

scriptomics data as used in our pipeline) [47]. Further constraints can include codon

usage [48], splice-isoforms [45,49], and can be analysed using pathway-oriented ap-

proaches [50,51]. The metabolic network is then solved by maximising one or more

cellular objectives (usually the biomass and energy-related or application-specific

production of metabolites). For a comprehensive introduction to constraint-based
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metabolic modelling and its poly-omic extensions, the reader is referred to the re-

views by Palsson and Vijayakumar et al. [52, 53].

As omics data to constrain the model, here we use transcriptomic data from each

individual to generate personalised metabolic models. Through GEMsplice [45], we

modify the upper- and lower- limits of reactions as a function of the expression

levels of the genes involved in the reaction. More specifically, for each individual,

to predict the cellular flux distribution (fluxomic profile) when multiple objectives

have to be taken into account, we use the following bilevel linear program:

max gᵀv

such that max fᵀv, Sv = 0,

vminϕ(Θ) ≤ v ≤ vmaxϕ(Θ).

(3)

The vectors f and g are weights to select (or combine) the objectives to be max-

imised from the vector v. The vector Θ represents the expression of a biochemical

reaction, defined from the individual-based expression levels of its genes with a rule

involving the max and min operators, depending on the type of enzyme (single gene,

isozyme, or enzymatic complex). The function ϕ, which acts on Θ, converts the re-

action expression values into coefficients for the bounds of reactions activated by

those genes [54]. Here we set the primary objective f as biomass and the secondary

objective g as ATP maintenance. Simulations were performed in Matlab.

Cluster analysis

Cluster analysis was used in order to group individual response according to both

their transcriptomic and fluxomic profiles, and visualise them with chronological

age. We compared both agglomerative hierarchical clustering (AHC) and k-means

clustering using a novel application of the silhouette method. The silhouette method

calculates a value which is a measure of the similarity of the values within a cluster

(cohesion) and the dissimilarity of the values within that cluster to other clusters

(separation). The silhouette calculation gives a value between −1 and 1. Silhouette

values close to 1 are desirable as they indicate a cluster has high cohesion and

high separation; if most values are close to 1 then the number of clusters is a good

representation of the data.

Here we use the silhouette value to measure the cohesion and separation of the

clustering of individuals by chronological age [55]. We define the silhouette value of

an individual within a cluster as:

s(c) =
l(c)− a(c)

max(a(c), l(c))
, (4)

where s is the silhouette value (−1 6 s(c) 6 1), c is the chronological age of the

individual, a is the average dissimilarity of c to the other ages in the same cluster

and l is the lowest average dissimilarity of c to any other age in a different cluster.

Our motivation for using the silhouette method was twofold. Firstly, we wanted

to statistically compare the silhouette values for AHC and k-means to see which

method performed better at clustering the data with chronological age. Secondly,

we wanted to statistically compare whether transcriptomic-based or fluxomic-based

clusters of individuals were consistent with chronological age.
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Principal component analysis

Multidimensional data such as fluxomic datasets can be visualised using Principal

Component Analysis (PCA). PCA can reduce multidimensional datasets to as few

as two or three latent dimensions (components), which allows inference of variables

causing the largest variations in the data. Here we use PCA to identify the fluxes

accounting for the greatest variation between individuals in different age groups

according to chronological age. In our PCA analysis, the fluxomic data was split

according to three chronological age groups: 21 and under (112 individuals: 64

female and 48 male), 22 to 49 (360 individuals: 219 female and 141 male), and 50

and over (27 individuals: 11 female and 16 male). The analysis was performed in R

and visualised using FactoMineR [56].

The CD4 T-cell model contains 4229 flux variables (metabolic reactions). PCA

analysis gives the contribution of each variable (reaction) to the variability of each

component. The proportion of variability accounted for by a component is defined

numerically by its eigenvalue. The total contribution Tv of a given variable across the

components can be calculated by determining its overall weighted sum as follows:

Tv =

n∑
i=1

EiVi, (5)

where Ei is the eigenvalue for the principal component i, Vi is the variable (reaction)

contribution to the principal component i, and n is the number of components

chosen to represent the data.

Variables (reactions) can be mapped to a subsystem (metabolic pathway), which

contains a number of reactions that are interlinked to perform a cellular metabolic

function. The CD4 T-cell model contains 95 pathways, each of which corresponds

to a number of reactions and their flux values. A flux value for each pathway was

calculated as the mean of its reaction flux values, and PCA was also performed on

the pathway flux rates obtained for each individual. Similarly, the total contribution

Ts of a given pathway across the components can be found using:

Ts =

n∑
i=1

EiSi, (6)

where Ei is the eigenvalue for the principal component i, Si is the subsystem (path-

way) contribution to the principal component i, and n is the number of components.

Elastic net regression

We use elastic net regression to identify metabolic predictors of chronological age

and their effect sizes. Elastic net regression is a linear hybrid of the L2 penalty of

ridge regression [57] and the L1 penalty of lasso regression [58]. For α between 0 and

1, where 0 is ridge regression and 1 is lasso regression, and a strictly non-negative

λ, elastic net is defined as [59]:

(β̂, β̂0) = argmin
β,β0

(
1

2N

N∑
i=1

(yi − β0 − xTi β)2 + λPα(β)

)
, (7)
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where

Pα(β) =
(1− α)

2
‖β‖22 + α‖β‖1 =

p∑
j=1

(
(1− α)

2
β2
j + α|βj |

)
, (8)

N is the number of individuals, yi is the chronological age of individual i, xi is a

p× 1 vector of p metabolic pathway fluxes at individual i, α is set to 0.5 to achieve

a balance between L1 and L2 norms, λ is a positive regularization parameter, β0
is a scalar parameter, and β is a p × 1 vector of effect sizes on chronological age

(regression coefficients), where p is the number of metabolic pathways. We also

performed an equivalent analysis directly on reaction fluxes (Additional file 3).

Elastic net overcomes some of the limitations of using the lasso method alone [59].

When analysing high dimensional data, such as the individual by reaction data

(499× 4229), where the number of predictors is greater than the number of obser-

vations, the lasso method can only select at most the same number of variables as

observations. However, omic data tends by its nature to often be highly correlated,

which means there is high correlation between regression predictors. Where there is

a group of highly correlated predictors, the lasso method will only select one vari-

able from the group. The advantage of the elastic net method in our context is that

while the L1 part of the penalty generates a sparse model, the quadratic part of the

penalty (L2 regularisation ‖β‖2), taken from ridge regression, allows the number of

selected variables to be greater than the number of observations, and allows groups

of strongly correlated variables to be selected.

Results and Discussion
Clustering shows best dataset for prediction of chronological age

From the plot of average age-based silhouette values (Figure 2A), optimal clus-

ter numbers were chosen from the point closest to 1 at which there is an ‘elbow

bend’ in the curve, indicating a drop in the amount of variance explained by the

clusters after this point [60]. For the transcriptomic data seven clusters were cho-

sen, while for fluxomic data six clusters were chosen. The pairwise distance of the

chosen cluster numbers and the results of clustering for both transcriptomic and

fluxomic data with chronological and transcriptomic age are shown in Figures 2E,

2C, 2D, and 2B respectively. We selected k-means as a clustering algorithm because

it performed consistently better than hierarchical clustering both in the transcrip-

tomic (Kolmogorov-Smirnov test statistic = 0.66, p-value = 2.91 · 10−6) and in

the fluxomic-based clustering (Kolmogorov-Smirnov test statistic = 0.8, p-value

= 5.59 · 10−9).

Remarkably, with both methods, and considering a variable number of clusters

between 2 and 30 (Figure 2A and Additional file 1), fluxomic-based clustering con-

sistently outperformed transcriptomic-based clustering in terms of age-based aver-

age silhouette values (Kolmogorov-Smirnov test statistic = 0.38, p-value = 0.022

for k-means; Kolmogorov-Smirnov test statistic = 0.62, p-value = 1.15 · 10−5 for

hierarchical). We also analysed the pattern of silhouette values based on deviations

from linearity. In general, we found that drops in silhouette values corresponded

to smaller clusters being merged into much larger, less distinct clusters, or clus-

ter boundaries changing such that there was a loss of intra-cluster cohesion and
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inter-cluster separation (more details can be found in Additional file 5). Our results

therefore suggest that, compared to gene expression values, individual-based poly-

omic models and their predicted flux rates are a better predictor of chronological

age.

Principal component analysis identifies predictors of ageing

The number of components to retain in the analysis was determined by their eigen-

values and the total contribution to variance explained by the components. Three

criteria were applied to the data: (i) according to Kaiser’s criterion [61] only those

components with eigenvalues greater than 1 should be retained; (ii) the overall con-

tribution to variance of the retained components should be 50% or greater; and (iii)

for an n×m matrix, if the data were randomly distributed the expected contribu-

tion to variance of the eigenvalue for each axis would be 100/(n − 1) % in terms

of rows [62]. Therefore, any axis with a contribution to variance larger than this

proportion should be retained as “significant”. The threshold percentage variable

contributions to variance for each group used in the analysis is shown in Table 1.

The resulting number of components retained for analysis for each group is shown

in Table 2.

Using only the significant components, the overall contribution of each reaction

to component variability was calculated using (5) for each of the three age groups,

21- (21 and under), 22-49 and 50+ (50 and over). The contributions of each of

the reactions to the different age groups were then compared by calculating the

difference between them. The differences between the reaction contributions for (i)

21- and 22-49, (ii) 21- and 50+, and (iii) 22-49 and 50+ were obtained in order to

determine the reactions that vary the most with age (see Additional file 2).

In the results of the analysis of the differences in overall contribution of the

95 pathways, four pathways appeared in the top 20 of all the age group compar-

isons: CoA synthesis, vitamin D metabolism, hyaluronan metabolism and pyruvate

metabolism. All four of these pathways also decreased in their contribution with age.

Pyruvate and CoA are both key components of the citric acid cycle, which is es-

sential in energy production in the mitochondria. Reduced stamina observed in the

ageing population is thought to be related to impairment of mitochondrial energy

production [63, 64]. Hypovitaminosis D in the ageing population is a major cause

of impaired bone formation and mineralisation (osteoporosis) [65, 66]. Hyaluronan

or Hyaluronic acid (HA) has a high capacity to bind and retain water molecules

and is found in high levels in the extracellular matrix of skin where it regulates

skin moisture. Reduced levels of HA are associated with the loss of moisture in

ageing skin [67, 68]. Changes in HA size contribute to age-related impairment of

wound healing in skin [69,70] and to the viscoelasticity of synovial fluid, which can

contribute to osteoarthritis, a common disease of ageing [71–73].

In the 21- to 22-49 group, the overall difference in contribution values for all but

one of the top 20 pathways increased from the 21- group to the 22-49 group. Inter-

estingly, CoA synthesis increased but CoA catabolism decreased, suggesting higher

CoA levels due to increased synthesis and decreased degradation. Conversely, for

the 21- group and 50+ group, the overall contribution values for all but one of the

top 20 pathways decreased. Only Vitamin B2 metabolism increased. This is consis-

tent with recent studies showing that the activity of vitamin B2 metabolism does
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not decrease until after the age of 50 [74]. All of the top 20 pathways contribution

values decreased for the 50+ group compared to the 22-49 group.

Squalene and cholesterol synthesis, vitamin A metabolism and glycine, serine, ala-

nine and threonine metabolism overall contributions all decrease with age. Sebum,

produced by the sebaceous glands, contains both cholesterol and squalene. Squa-

lene is correlated with α-tocopherol (vitamin E) levels on the surface of the skin.

α-tocopherol is the main antioxidant on the skin [75] and its decrease with ageing

may contribute towards the signs of ageing skin [76,77].

The reactions that make up the squalene and cholesterol synthesis pathway are

part of the mevalonate pathway, which produces the precursors of all the steroid hor-

mones, heme cholesterol, coenzyme Q10, and vitamin K [78]. The decrease in plasma

levels of high density lipoprotein (HDL) cholesterol is correlated with a higher risk

of atherosclerosis [79]. Low vitamin K has been associated with osteoarthritis and

impaired cognitive function in older adults [80, 81]. The synthesis of mitochondrial

coenzyme Q10 can decrease with age [82]; this constitutes an important factor for

health, as coenzyme Q10 is an antioxidant that protects against diseases that in-

volve oxidative stress, such as cardiovascular and neurogenerative diseases [83–88].

Furthermore, the synthesis of heme, the major functional form of iron in the body,

decreases with age [89, 90] and has been linked with neurodegenerative disorders

such as Alzheimer’s disease [91]. Steroid hormones are also known to decline with

age [92,93]; decreasing sex steroid hormone deficiency in oestrogens and androgens

contributes to ageing skin [94, 95] and increased risk of cardiovascular disease in

women [93,96].

Glycine, serine, alanine and threonine are all non-essential amino acids. Decreasing

glycine levels have been linked with age-associated oxidative stress [97], while age-

associated decrease in serine metabolism has been linked with impaired memory

function in the brain [98, 99]. Alanine metabolism is associated with the liver, and

alanine transaminase has been suggested as a biomarker for ageing [100]. Vitamin A

cannot be produced by the body and is therefore obtained through diet; a decrease

in the active form of vitamin A in the body, retinol, is thought to be linked with

age-associated slowing in visual dark-adaption [101,102].

Figures 3A-C show the factor maps for the top 20 pathways contributing to vari-

ance for each age group. For the 21- group, the overall contribution of components

1 and 2 to variation is 15.2%. For the 22-49 group, it is 12.4% and for the 50+

group it is 24%. If the variance was evenly distributed across all pathways, then the

expected average variation would be 100/95 % = 1.05%. Interestingly, the variance

explained by the first two components in the 50+ group is higher compared to the

other two groups, suggesting that less latent pathways, but with an increasingly

strong role, characterise the ageing phenotype.

As a result, the biplot (Figure 4D) of individuals grouped by age and the top 10

pathways contributing to overall variance of components 1 and 2 shows differenti-

ation between the three age groups, with the biggest differentiation shown in the

axis of the 50+ group compared to the other two. The 50+ age group appears to

lie along the glyoxylate and dicarboxylate metabolism axis. To identify the amount

of intercorrelation in the pathway flux data, correlation plots were created for the

pathways with the top 20 overall difference in contribution in each group, 21- and
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22-49, 21- and 50+, and 22-49 and 50+ (Figures 4A-C). The plots show the large

amount of intercorrelation between pathways.

Exchange/demand reaction and oxidative phosphorylation remain the high con-

tributors to variance for all three age groups. The most notable rise in contribution

to variation with age is vitamin C metabolism, which moves from rank 18 in the

21- to rank 2 in the 50+ group. Changes in oxidative stress are known to affect

the levels of vitamin C in the body [103]. Furthermore, oxidative damage to the

genome caused by ROS (reactive oxygen species) is thought to be one of the causes

of ageing [104]. Interestingly, ROS detoxification is one of the top 10 contributors

in the 21- and 22-49 groups but does not appear in the top 20 contributors in the

50+ group, suggesting a possible link with ageing, oxidative stress and the chang-

ing variation contributed by vitamin C metabolism. Glyoxylate and dicarboxylate

metabolism also has a large rise in contribution to variance with age. Glyoxylate

and dicarboxylate metabolism is strictly linked with glycine, serine and threonine

metabolism, pyruvate metabolism, ascorbate metabolism (a mineral salt of vitamin

C), all of which our results have identified as linked to ageing.

Elastic net regression identifies metabolic-age predictors

The analysis was performed using tenfold cross validation for both metabolic re-

actions and metabolic pathways. The results of the metabolic pathways analysis

are reported here, while the results for the metabolic reactions can be found in

Additional file 3. Elastic net regression of the 95 metabolic pathways returned 100

possible λ values with their associated effect sizes. The value λ = 1.57 was chosen

as this had the lowest mean squared error value. This gave metabolic effect sizes

for three pathways: butanoate metabolism, pyrimidine synthesis and beta-alanine

metabolism (Table 3).

Both butanoate and beta-alanine metabolism have been linked to sarcope-

nia, deterioration of skeletal muscle, with age [105]. Butanoate and beta-alanine

metabolism are facilitated by the enzyme aldehyde dehydrogenase. One of the sub-

strates of this enzyme is nicotinamide adenine dinucleotide (NAD). Reversal of NAD

loss as we age is currently undergoing human trials following successful age reversal

of mitochondrial function in the skeletal muscle cells of mice [106]. Mitochondrial

dysfunction, which is linked to ageing, also leads to a reduction of pyrimidine syn-

thesis [107,108].

In order to calculate the biological/metabolic ages of the individuals, equations

(1) and (2) were modified to use the metabolic effect sizes. We therefore define the

following metabolic predictor:

M =
∑
i

bifi, (9)

where M is the metabolic predictor, fi is the flux value of the ith pathway, and bi

is the effect size for the ith pathway. The metabolic age was then defined as:

SM = µage + (M − µM )
σage
σM

, (10)
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where µage and σage are the mean and the standard deviation of the chronological

age, while µM and σM are the mean and the standard deviation of the metabolic

predictor M .

The metabolic ages showed correlation (p-value = 4.7 · 10−4) with chronological

age. Both the metabolic ages and the chronological ages of all 499 individuals can

be found in Additional file 3, which also includes the results of the regression per-

formed directly on reactions. This is a promising starting point for a metabolic age

predictor, which can be further refined using more samples to improve predictor

accuracy.

Conclusion
While chronological age gives an accurate measurement of the time since an individ-

ual’s birth, biological age – also called transcriptomic age – gives a more accurate

representation of the relative health of an individual compared to others of the same

age. Where an individual has a biological age greater than their chronological age,

they are ageing more quickly than their peers, and therefore have decreased life ex-

pectancy. Finding predictors of biological ageing and measuring their presentation

in individuals can allow targeted and personalised interventions, both medication

and lifestyle-based, to improve health and life expectancy.

A number of age-associated genes along with their effect sizes have previously been

identified in the literature and used to calculate the biological age of individuals [33].

The limitation of this approach is that it does not take into account the metabolic

effects of those gene expression values on the cellular phenotype. For example, a

gene that has been found to be differentially expressed with age may have little or

no effect on cellular metabolism. Here we have achieved the first steps towards a

metabolic age predictor to overcome the limitations of previous transcriptomic-only

approaches.

Using a genome-scale metabolic model of CD4 T-cells combined with transcrip-

tomic data, we were able to obtain individual-specific metabolic models and gener-

ate fluxomic data. The subsequent stage of our analysis used a novel application of

the silhouette method and clustering techniques, from which we identified that flux-

omic data clusters better with chronological age, therefore suggesting that metabolic

models are a better predictor of the chronological age of an individual. Applying

PCA analysis and elastic net regression enabled us to identify potential metabolic

predictors of ageing. Many of these predictors have also been identified in the litera-

ture as linked to the ageing process, validating the reliability of the method. Finally,

elastic net regression produced metabolic age predictors and their effect sizes, from

which we calculated the metabolic age of each individual.

Our next step will be to further refine the metabolic age predictors obtained

from elastic net regression with more data from individuals across the different

age ranges. Future studies could also use other age predictors, such as epigenetic

clocks [109] and telomere length [110] as variables to investigate how they correlate

with our metabolic age predictor. Furthermore, although proteomics data has some

limitations, including providing less coverage than transcriptomic data [111, 112],

it can be included as a complementary method to improve the accuracy of the

results. We will also investigate whether there are differences in the metabolic age



Yaneske and Angione Page 12 of 20

predictors based on different phenotypes/attributes of individuals such as gender.

This will allow further refinement of predictors based on individual data, and will

suggest more personalised interventions to reduce metabolic age and improve life

expectancy.
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Table 1 Eigenvalue threshold % variance values for PCA. Significant components had eigenvalues
with an individual contribution to variance greater than the threshold percentage variance value. The
threshold percentage variances for each of the different groups of data are shown along with the
details of how that value was obtained.

Group Individuals Average Threshold % Variance
All individuals 499 100/498 0.2

21- 112 100/111 0.9
22-49 360 100/359 0.28
50+ 27 100/26 3.85

Table 2 Number of components retained in PCA. For each group, the number of significant
components are shown along with their cumulative contribution to variance.

Group Components Retained % Variance
All individuals 151 74.88

21- 39 63.42
22-49 112 71.79
50+ 10 55.14

Additional Files
Additional file 1 — Silhouette values raw data

Average chronological age-based silhouette values for Hierarchical Transcriptomic Clusters (AHC T), Hierarchical

Fluxomic Clusters (AHC F), k-means Transcriptomic Clusters (k-means T) and k-means Fluxomic Clusters (k-means

F).

Additional file 2 — Supplementary PCA analysis raw data

Overall reaction contributions for each age group, differences between the overall reaction contributions for each age

group, overall pathway contributions for each age group, differences between the overall pathway contributions for

each age group, and absolute differences between the overall pathway contributions for each age group. More details

about the reactions can be found in additional file 4.

Additional file 3 — Metabolic ages

Metabolic ages calculated using pathway flux values, metabolic ages calculated using reaction flux data including

predictors, effect sizes, λ values, MSE and p-value.

Additional file 4 — Fluxomic data

The fluxomic data generated using the normalised gene expression data and the GEMsplice toolbox. Full details

from the CD4 model of the reactions, reaction names and their formulas. The raw data used for this project can be

found under GEO Accession Number GSE56033 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE56033

Additional file 5 — Plots of k-means clusters

Contains plots of clustered data used for comparison to analyse the cause of drops in the silhouette values. In the

fluxomic k-means data we analysed the drop in silhouette values between clusters 16 and 17 and between clusters

18 and 19. We found that the cohesion of the clusters represented by the numbers 5, 9 and 12 in the plot of 16

clusters was lost in the plot of 17 clusters . Similarly, the cohesion of the clusters represented by the numbers 5, 6,

15 and 17 in the plot of 17 clusters plot were lost in the plot of 18 clusters.

In the transcriptomic k-means data we analysed the drop in silhouette values between clusters 10 and 11, 14 and 15

and 17 and 18. In the plot of 10 clusters the clusters represented by the numbers 2 and 4 lose their distinction in

the plot of 11 clusters as they are merged into one large cluster. Similarly the clusters represented by the numbers

10 and 11 in the plot of 14 clusters are merged into a less distinct single cluster in the plot of 15 clusters.

Additionally, the clusters represented by the numbers 2, 9 show better cohesion in the plot of 14 clusters. In the

comparison of the plots of 17 and 18 clusters the cluster represented by the number 17 is particularly better defined

in the plot of 17. Clusters 7, 15 and 16 are also better defined in the plot of 17 clusters.

Table 3 Metabolic effect sizes. The effect sizes on age of the three metabolic pathways selected by
elastic net regression.

Subsystem Effect size
Butanoate metabolism -0.004462535

Pyrimidine synthesis -2.18609E-05
beta-Alanine metabolism -0.002443117
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Poly-omic ageing map
A pipeline of machine learning methods is applied to 
the metabolic models, showing that fluxomic data 
clusters better with chronological age than 
transcriptomic data, and identifying metabolic 
predictors of individual ageing phenotypes.

Data
Gene expression data from CD4 T-cells, 
chronological age and transcriptomic age 
from 499 individuals.

Genome-scale poly-omic modelling
The transcriptomic data is fed into a 
model of the CD4 cell and mapped to the 
cell metabolism. 

Individual-specific metabolic models
Running the genome-scale model on the gene 
expression data generates individual/sample specific 
metabolic models. 

Transcriptomic ageing
Recent research has identified age-
associated genes allowing mapping of 
chronological and transcriptomic ageing in 
the transcriptomic layer.

Functional Map of Transcriptomic Ageing

Functional Map of Chronological Ageing

Figure 1 Poly-omic ageing pipeline. We start with the transcriptomic data and chronological
ages from the CD4 T-cells of 499 individuals. We use the chronological data and corresponding
age-associated transcriptomic predictors to obtain the effect of both chronological and
transcriptomic ageing on the transcriptomic layer. We then combine with the functional biological
network data determined by the metabolism and poly-omic model to obtain individual-based
metabolic models and their fluxomic profiles. Finally, we adapt machine learning techniques to
show that fluxomic data clusters better with chronological age than transcriptomic data, and to
identify metabolic predictors of ageing (the poly-omic ageing map).
Definition of key terms. Transcriptomic – gene expression data represented by a measurement of
the mRNA transcripts within a cell. Fluxomic – fluxomic data refers to reaction flux rates, namely
the value for the rate of metabolite conversion, measured in millimoles per hour per grams of dry
weight, for each reaction or collection of related reactions (subsystems) within a cell. Poly-omic –
the integration of more than one type of ‘omic’ data e.g. transcriptomic and fluxomic data.
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Figure 2 k-means clustering with age. We propose and investigate an average age-based
silhouette value (A). This is calculated using the chronological age, and clustering data from both
hierarchical and k-means clustering. The silhouette values are calculated by averaging all the
individuals’ silhouette scores, for a number of clusters ranging from 2 to 30. k-means clustering
performs consistently better than hierarchical clustering. In both types of clustering, fluxomic data
clusters better with chronological age than transcriptomic data. The pairwise distance of clusters
with chronological age is visualised in scatter plots for both transcriptomic (E) and fluxomic (C)
data. Clusters are annotated with different shapes, while age is shown with colour. Individual
clusters are plotted against transcriptomic and chronological age for both transcriptomic (D) and
fluxomic (B) data. Note that since transcriptomic age was calculated from transcriptomic data,
we would expect to see more distinction in transcriptomic age between clusters for the
transcriptomic data.
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Figure 3 Principal component analysis factor maps. Factor maps of the top 20 contributing
pathways for components 1 and 2 in each age group, 21-, 22-49 and 50+ (A, B, C). The quality
of the contribution of each pathway is shown by its colour.
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Figure 4 Principal component analysis applied to pathways. The correlation plots of fluxes are
shown for the pathways with the top-20 overall difference in each group, 21- and 22-49, 21- and
50+, and 22-49 and 50+ (A, B, C). The plots show the large amount of intercorrelation between
pathways. A biplot of individuals grouped by age and the top 10 pathways contributing to overall
variance of components 1 and 2 is also shown (D). We note some differentiation between the three
age groups, with the biggest differentiation shown in the axis of the 50+ group compared to the
other two. The 50+ group appears to lie along the glyoxylate and dicarboxylate metabolism axis.


