4,715 research outputs found

    Particle Flow with a Hybrid Segmented Crystal and Fiber Dual-Readout Calorimeter

    Full text link
    In the reconstruction of physics events at future e+^+e^- colliders the calorimeter design has a crucial role in the overall detector performance. The reconstruction of events with many jets in their final state sets stringent requirements on the jet energy and angular resolutions. The energy resolution for jets with energy of about 45 GeV is required to be at the 4-5\% level to enable an efficient separation of the W and Z boson invariant masses. We demonstrate in this paper how such a performance can be achieved by exploiting a particle flow algorithm tailored for a hybrid dual-readout calorimeter made of segmented crystals and fibers. The excellent energy resolution and linearity of such calorimeter for both photons and neutral hadrons (3%/E3\%/\sqrt{E} and 26%/E26\%/\sqrt{E}, respectively), inherent to the homogeneous crystals and dual-readout technological choices, provides a powerful handle for the development of a new approach for particle identification and jet reconstruction. While the dual-readout particle flow algorithm (DR-PFA) presented in this paper is at its early stage of development, it already demonstrates the potential of a hybrid dual-readout calorimeter for jet reconstruction by improving the jet energy resolution with respect to a calorimeter-only reconstruction from 6.0\% to about 4.5\% for 45 GeV jets

    Sub-10 ps time tagging of electromagnetic showers with scintillating glasses and SiPMs

    Full text link
    The high energy physics community has recently identified an e+ee^+e^- Higgs factory as one of the next-generation collider experiments, following the completion of the High Luminosity LHC program at CERN.The moderate radiation levels expected at such colliders compared to hadron colliders, enable the use of less radiation tolerant but cheaper technologies for the construction of the particle detectors. This opportunity has triggered a renewed interest in the development of scintillating glasses for the instrumentation of large detector volumes such as homogeneous calorimeters. While the performance of such scintillators remains typically inferior in terms of light yield and radiation tolerance compared to that of many scintillating crystals, substantial progress has been made over the recent years. In this paper we discuss the time resolution of cerium-doped Alkali Free Fluorophosphate scintillating glasses, read-out with silicon photo-multipliers in detecting single charged tracks and at different positions along the longitudinal development of an electromagnetic shower, using respectively 150~GeV pions and 100~GeV electron beams at the CERN SPS H2 beam line. A single sensor time resolution of 14.4~ps and 5-7~ps was measured respectively in the two cases. With such a performance the present technology has the potential to address an emerging requirement of future detectors at collider experiments: measuring the time-of-flight of single charged particles as well as that of neutral particles showering inside the calorimeter and the time development of showers

    Sustained impairment of human cytomegalovirus (HCMV)-specific CD4+ and CD8+ T cell response is responsible for recurrent episodes of disseminated HCMV infection in a D+R- hand transplant recipient

    Get PDF
    Human cytomegalovirus (HCMV) infection is the major viral complication in solid organ transplant recipients. Seronegative recipents (R-) of organs from seropositive donors (D+) appear to be at higher risk of developing symptomatic HCMV infection. To what extent systemic life-threatening complications can be risked for non-life-saving transplant procedures? A case report describing successful treatment of repeated episodes of active HCMV infection in a D+R- hand recipient in the absence of HCMV-specific T-cell immunity is presented. In the attempt to save both the patient and the transplanted hand, a preemptive treatment strategy was adopted with the aim to boost the constitution of the virus-specific T-cell immune response and simultaneously avoid onset of disease. Careful monitoring of HCMV load in blood and HCMV-specific T-cell immunity guided administration of repeated courses of antiviral treatment and avoided emergence of HCMV-related symptoms. Following establishment of HCMV-specific CD4+ and CD8+ T-cell response, preemptive treatment was no longer required due to sustained HCMV disappearance from blood. The patient is now well, and his hand too. In conclusion, evaluation of virus-specific T-cell immunity is of crucial importance in D+R- transplant recipients and careful monitoring of HCMV-specific T cell mediated response should always parallel monitoring of HCMV load in transplant recipients

    Manganese concentrations in soil and settled dust in an area with historic ferroalloy production

    Get PDF
    Ferroalloy production can release a number of metals into the environment, of which manganese (Mn) is of major concern. Other elements include lead, iron, zinc, copper, chromium, and cadmium. Manganese exposure derived from settled dust and suspended aerosols can cause a variety of adverse neurological effects to chronically exposed individuals. To better estimate the current levels of exposure, this study quantified metal levels in dust collected inside homes (n=85), outside homes (n=81), in attics (n=6), and in surface soil (n=252) in an area with historic ferroalloy production. Metals contained in indoor and outdoor dust samples were quantified using inductively coupled plasma optical emission spectroscopy while attic and soil measurements were made with a XRF instrument. Mean Mn concentrations in soil (4600 μg/g) and indoor dust (870 μg/g) collected within 0.5 km of a plant exceeded levels previously found in suburban and urban areas, but did decrease outside 1.0 km to the upper end of background concentrations. Mn concentrations in attic dust were approximately 120 times larger than other indoor dust levels, consistent with historical emissions that yielded high airborne concentrations in the region. Considering the potential health effects that are associated with chronic manganese inhalation and ingestion exposure, remediation of soil near the plants and frequent, on-going hygiene indoors may decrease residential exposure and the likelihood of adverse health effects

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one
    corecore