220 research outputs found

    A Model to Describe Transport Properties in Bi2Sr2(CazPr1z)Cu2O8+yBi_2Sr_2(Ca_zPr_{1-z})Cu_2O_{8+y}

    Full text link
    A pseudo-spin model is proposed, as a means to describe some transport properties (resistivity and Hall mobility) in Bi2Sr2(CazPr1z)Cu2O8+yBi_2Sr_2(Ca_zPr_{1-z})Cu_2O_{8+y}. Our model is based in a double-well potential where tunneling in a given site and interaction between different lattice sites are allowed only through the excited states. Doping of the pure system by the addition of PrPr increases the ratio between the activation energy and the tunneling constant. The model Hamiltonian displays some features which are present in the hydrogen-bonded ferroelectrics. Its dynamics is treated in the random phase approximation and the characteristic frequency (time) is used in a Drude formula in order to obtain some transport properties of the system, namely the electric resistivity and the Hall mobility. The quantities calculated in this work are compared with the experimental data of B. Beschoten, S. Sadewasser, G. G\"{u}ntherodt and C. Quitmann [Phys. Rev. Lett.77, 1837(1996)].Comment: 14 pages, 4 figure

    Photo Reference and Identification Sample Marker

    Get PDF
    The Embry-Riddle Aeronautical University (ERAU) Spacesuit Utilization of Innovative Technology Laboratory (S.U.I.T. Lab) specializes in spacesuit operations, testing, and analysis, with a focus on human performance. The lab works to involve students from all disciplines in human spaceflight research. A majority of the lab’s students are studying Spaceflight Operations, Aerospace Engineering, or Human Factors. This proposal, created by undergraduate students at ERAU, seeks to describe the capabilities of the Photo Reference and Identification Sample Marker(PRISM). PRISM is designed as a sample size, color, and location calibration marker for use during lunar surface extravehicular activities (EVAs). This application requires ease of use for astronauts wearing the Exploration Extravehicular Mobility Unit (xEMU) spacesuit, as well as reliability in the lunar dust environment. PRISM can either be configured vertically or horizontally depending on the sample site. The device consists of an outer casing and a slider subassembly. The casing features reference markers for identification and calibration on the exterior. The slider subassembly includes a slider block which is used to deploy the legs for a vertical configuration. There are additional reference markers along the legs, and they can easily be extended to be stable on inclined terrain. PRISM can also simply be placed on surfaces horizontally without deploying the legs if desired. PRISM is a versatile, easy to use, and dust tolerant device designed to streamline science operations on the lunar surface

    First Human Isolate of Hantavirus (Andes virus) in the Americas

    Get PDF
    We isolated Andes virus (formal name: Andes virus [ANDV], a species in the genus Hantavirus), from serum of an asymptomatic 10-year-old Chilean boy who died 6 days later of hantavirus pulmonary syndrome (HPS). The serum was obtained 12 days after his grandmother died from HPS and 2 days before he became febrile. No hantavirus immunoglobulin (Ig) G or IgM antibodies were detected in the serum sample. After three blind passages, ANDV antigens were detected in Vero E6 cells by immunofluorescence assay and enzyme-linked immunosorbent assay, and ANDV RNA was detected by reverse transcription-polymerase chain reaction. A fragment of the virus genome showed 96.2% nucleotide identity with that of prototype ANDV. To our knowledge, this is the first isolation of any agent of hemorrhagic fever with renal syndrome from a human and the first such isolation of hantavirus before symptoms of that syndrome or HPS began

    Identification and characterization of a novel non-structural protein of bluetongue virus

    Get PDF
    Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77–79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell

    The 5′-untranslated region of the mouse mammary tumor virus mRNA exhibits cap-independent translation initiation

    Get PDF
    In this study, we demonstrate the identification of an internal ribosome entry site (IRES) within the 5′-untranslated region (5′-UTR) of the mouse mammary tumor virus (MMTV). The 5′-UTR of the full-length mRNA derived from the infectious, complete MMTV genome was cloned into a dual luciferase reporter construct containing an upstream Renilla luciferase gene (RLuc) and a downstream firefly luciferase gene (FLuc). In rabbit reticulocyte lysate, the MMTV 5′-UTR was capable of driving translation of the second cistron. In vitro translational activity from the MMTV 5′-UTR was resistant to the addition of m7GpppG cap-analog and cleavage of eIF4G by foot-and-mouth disease virus (FMDV) L-protease. IRES activity was also demonstrated in the Xenopus laevis oocyte by micro-injection of capped and polyadenylated bicistronic RNAs harboring the MMTV-5′-UTR. Finally, transfection assays showed that the MMTV-IRES exhibits cell type-dependent translational activity, suggesting a requirement for as yet unidentified cellular factors for its optimal function

    Baropodometry on women suffering from chronic pelvic pain - a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have associated chronic pelvic pain with a stereotyped pattern of movement and posture, lack of normal body sensations, a characteristic pain distribution. We aimed at evaluating if these postural changes are detectable in baropodometry results in patients with chronic pelvic pain.</p> <p>Methods</p> <p>We performed a prospective study in a university hospital. We selected 32 patients suffering from chronic pelvic pain (study group) and 30 women without this pathology (regular gynecological work out - control group). Pain scores and baropodometric analysis were performed.</p> <p>Results</p> <p>As expected, study group presented higher pain scores than control group. Study and control groups presented similar averages for the maximum pressures to the left and right soles as well as soles supports in the forefeet and hind feet. Women suffering from chronic pelvic pain did not present differences in baropodometric analysis when compared to healthy controls.</p> <p>Conclusions</p> <p>This data demonstrates that postural abnormalities resulting from CPP could not be demonstrated by baropodometric evaluation. Other postural measures should be addressed to evaluate pelvic pain patients.</p

    IRF4 in multiple myeloma—biology, disease and therapeutic target

    Get PDF
    Multiple Myeloma (MM) is an incurable hematologic malignancy characterized by abnormal proliferation of plasma cells. Interferon Regulatory Factor 4 (IRF4), a member of the interferon regulatory family of transcription factors, is central to the genesis of MM. IRF4 is highly expressed in B cells and plasma cells where it plays essential roles in controlling B cell to plasma cell differentiation and immunoglobulin class switching. Overexpression of IRF4 is found in MM patients’ derived cells, often as a result of activating mutations or translocations, where it is required for their survival. In this review, we rst describe the roles fi of IRF4 in B cells and plasma cells and then analyse the subversion of the IRF4 transcriptional network in MM. Moreover, we discuss current therapies for MM as well as direct targeting of IRF4 as a potential new therapeutic strategy

    The Human Polyoma JC Virus Agnoprotein Acts as a Viroporin

    Get PDF
    Virus infections can result in a range of cellular injuries and commonly this involves both the plasma and intracellular membranes, resulting in enhanced permeability. Viroporins are a group of proteins that interact with plasma membranes modifying permeability and can promote the release of viral particles. While these proteins are not essential for virus replication, their activity certainly promotes virus growth. Progressive multifocal leukoencephalopathy (PML) is a fatal demyelinating disease resulting from lytic infection of oligodendrocytes by the polyomavirus JC virus (JCV). The genome of JCV encodes six major proteins including a small auxiliary protein known as agnoprotein. Studies on other polyomavirus agnoproteins have suggested that the protein may contribute to viral propagation at various stages in the replication cycle, including transcription, translation, processing of late viral proteins, assembly of virions, and viral propagation. Previous studies from our and other laboratories have indicated that JCV agnoprotein plays an important, although as yet incompletely understood role in the propagation of JCV. Here, we demonstrate that agnoprotein possesses properties commonly associated with viroporins. Our findings demonstrate that: (i) A deletion mutant of agnoprotein is defective in virion release and viral propagation; (ii) Agnoprotein localizes to the ER early in infection, but is also found at the plasma membrane late in infection; (iii) Agnoprotein is an integral membrane protein and forms homo-oligomers; (iv) Agnoprotein enhances permeability of cells to the translation inhibitor hygromycin B; (v) Agnoprotein induces the influx of extracellular Ca2+; (vi) The basic residues at amino acid positions 8 and 9 of agnoprotein key are determinants of the viroporin activity. The viroporin-like properties of agnoprotein result in increased membrane permeability and alterations in intracellular Ca2+ homeostasis leading to membrane dysfunction and enhancement of virus release
    corecore