302 research outputs found

    Metabolic effects of a high-fat diet post-weaning after low maternal dietary folate during pregnancy and lactation

    Get PDF
    Scope Investigate the influence of low-folate supply during pregnancy and lactation on obesity and markers of the metabolic syndrome in offspring, and how provision of a high-fat diet post weaning may exacerbate the resultant phenotype. Methods and results Female C57Bl/6 mice were randomized to low or normal folate diets (0.4 or 2 mg folic acid/kg diet) prior to and during pregnancy and lactation. At 4 wk of age, offspring were randomized to high- or low-fat diets, weighed weekly and food intake assessed at 9 and 18 wk old. Adiposity was measured at 3 and 6 months. Plasma glucose and triacylglycerol (TAG) concentrations were measured at 6 months. Maternal folate supply did not influence adult offspring body weight or adiposity. High-fat feeding post weaning increased body weight and adiposity at 3 and 6 months (p > 0.001). Maternal low folate lowered plasma glucose (p = 0.010) but increased plasma TAG (p = 0.048). High-fat feeding post weaning increased plasma glucose and TAG (p = 0.023, p = 0.049 respectively). Offspring from folate-depleted (but not folate-adequate) dams had 30% higher TAG concentration when fed the high-fat diet from weaning (p = 0.005 for interaction). Conclusion Inadequate maternal folate intake has long-term effects on offspring metabolism, manifested as increased circulating TAG, particularly in offspring with high-fat intake post weaning

    Research collaboration between China and Denmark for development of systemic approaches to agro-ecological pest management without pesticides with focus on vegetable, fruit and berry crops. Proceedings and recommendations from two network workshops

    Get PDF
    This report is the result of a network project which was established to discuss the potential for collaboration on development of systemic approaches to pest management without pesticides between Chinese and Danish researchers. The focus is on systemic approaches rather than input substitution of synthetic chemicals with agents of natural origin, however, the latter is considered as an integrated tool for the development and design of systemic approaches. The discussions were, furthermore, limited to management of invertebrate pests as well as diseases, while other pests such as weeds have not been included in the discussions. The discussions took place at two workshops and were based on presentations of research from the two countries and field visits in China and Denmark. After the first workshop that took place in China, it was agreed that Chinese and Danish researchers in this particular field had mutual interests and priorities and that there was a potential for creating collaboration that could yield results beneficial for the agricultural/horticultural sectors in both countries. It was also agreed that in spite of the many differences between variation in climate and ecosystems, as well as in farming systems and their organization in China and Denmark, there were many similarities in the production of high-value crops in the two countries, such as vegetables, fruit and berries and, therefore, an obvious focus for joint research efforts. It was also agreed that joint research efforts could aim at specific crops as well as aiming at the development of specific research approaches. Based on the observations and the agreements of the first workshop, the second workshop, which took place in Denmark, focused more specifically on the development of a research framework with specified research questions/topics. Two groups were formed – one working with vegetables and one with fruit and berries working in parallel – both looking into what kind of research is needed for development of systemic approaches to pesticide-free pest management should include both well-known practices and new practices. Although the discussions in the two groups took separate routes and unfolded and described the research topics in each their way, there was a clear consistency between the outputs of the work of the two groups. Each had identified three main research themes that more or less followed the same line and has been merged into three specific recommendations on themes for collaboration, namely: 1) ‘Research to provide the biological foundation and understanding of mechanisms and interactions for development of non-chemical solutions and to improve efficiency of new and existing control methods for severe pest problems’. 2) Research in ‘How best to integrate multifunctional plants (and crops) and use diversification to create a more healthy and productive farming system which is resilient to pests?’ 3) Research in ‘How to design and integrate pest management in eco-functional cropping systems at field and farm/landscape level?

    Crop-livestock integration provides opportunities to mitigate environmental trade-offs in transitioning smallholder agricultural systems of the Greater Mekong Subregion

    Get PDF
    CONTEXT: The Greater Mekong Subregion has been undergoing rapid agricultural transformation over the last decades, as traditional diverse subsistence-oriented agriculture is evolving towards intensified commercial production systems. Negative environmental impacts often include deforestation, nutrient pollution, and greenhouse gas (GHG) emissions. OBJECTIVE: This study aims to explore the potential of crop-livestock integration to mitigate trade-offs between economic and environmental impacts of smallholder farming systems at different stages of agricultural transition and degrees of agricultural diversity across the Greater Mekong Subregion. METHODS: We chose a ‘middle ground’ between detailed modeling of few, representative farming systems and modeling of large household populations. 24 low and high diversity farms were selected in Laos (Xieng Khouang province), Cambodia (Ratanakiri province) and Vietnam (Central Highlands) from a survey dataset of 1300 households. These farming systems were simulated with the whole-farm bio-economic and multi-objective optimization model FarmDESIGN, calculating operating profit, GHG emissions and nitrogen (N) balance. Two optimizations (‘business as usual’ vs. ‘crop-livestock integration’) were performed, generating ‘solution spaces’ or alternative configurations aiming to maximize profitability, keep farm N balanced and minimize GHG emissions. RESULTS AND CONCLUSIONS: Agricultural systems across the sites differed in their production orientation and management practices, representing various stages of agricultural transition. Nitrogen balances varied between sites, being negative in Ratanakiri (average 20.5 kg N ha 1 y 1) and Xieng Khouang ( 36.5 kg N ha 1 y 1) and positive in the Central Highlands (73 kg N ha 1 y 1). Negative balances point to unsustainable mining of nutrients due to sale of cash crops without sufficient inputs, and positive balances to the risk of environmental contamination. Total GHG emissions ranged from 0.52–8.12 t CO2e ha 1 and were not significantly impacted by stage of agricultural transformation or agricultural diversity. GHG sources in Ratanakiri and Xieng Khouang were determined by crop residue burning while in Central Highlands fertilizer and livestock were main emitters. High diversity farms obtained higher operating profits (10,379 USD y 1) than low diversity farms (4584 USD y 1). Crop-livestock integration, a combination of measures including introduction of improved forages grasses, manure recycling and residue feeding, and reduction of residue burning, resulted in larger ‘solution spaces’, thus providing farmers with more options to mitigate agro-environmental trade-offs. SIGNIFICANCE: These findings underline the potential of crop-livestock integration to support sustainable intensification pathways in the Greater Mekong region. Public and private investment in further research and extension is needed to develop and scale context-specific crop-livestock integration practices

    Drivers of land use complexity along an agricultural transition gradient in Southeast Asia

    Get PDF
    Agricultural systems in Southeast Asia are rapidly transitioning from subsistence-oriented to market-oriented agriculture. Driven by the highly complex and variable decision processes of individual farm households, these transitions have produced a diverse landscape mosaic across the region. Elucidation and characterization of underlying decision-making processes, and the factors that influence land use choices, are thus essential for sustainable land use planning. To enable a study that seeks to understand these linkages, data on plot-level 10-year land use history, management and farm performance indicators were collected from 163 households in the Northern Lao uplands and in the Central Highlands of Vietnam, areas chosen to represent two extremes of the transition gradient. The objectives of the study were (i) to describe plot-level sequence patterns of seasonal variation of land use over several years, (ii) to apply a sequence dissimilarity metric, the complexity index (CI), to measure land use transition in an agricultural system, and (iii) to identify the key drivers of land use change and their linkages with farm performance indicators and plot level characteristics through multi-dimensional analysis. CI allowed compressing historical land use data and quantifying land use complexity in a simple and efficient manner. Land use dynamics varied strongly between the two sites, with 66% of the land use types in the Laos site being completely replaced by others during the recall periods, compared to only 15% in the Vietnam site. Associated key drivers of land use change also differed significantly: while end use of agricultural products was the main driver behind land use changes in the Vietnam site, a more complex relationship between topography and management vs. land use change was evident in the Laos site. Likewise, land use complexity does not exhibit the same relationship with farm performance in the two sites: in the Central Highlands, households with higher food availability are half as likely to transition, while in the Lao uplands, land use complexity was significantly correlated with the Progress out of Poverty index. Multidisciplinary studies remain necessary to assess the impact of innovative sustainable intensification options on system performance and environmental sustainability, before policies are enacted to support their dissemination in Southeast Asian smallholder agricultural systems. Context-specific CI thresholds associated with system quality indicators could support this by informing decision-makers on the pace of agricultural transformation and its environmental impacts

    On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?

    Get PDF
    The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO2 and k both contribute significantly to interannual F variability, but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here, we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO2 and α on a range of timescales. On interannual and shorter timescales, both ΔpCO2 and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of non-seasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer term flux variability

    Adenosine Kinase of T. b. rhodesiense Identified as the Putative Target of 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine Using Chemical Proteomics

    Get PDF
    Human African trypanosomiasis (HAT), a devastating and fatal parasitic disease endemic in sub-Saharan Africa, urgently needs novel targets and efficacious chemotherapeutic agents. Recently, we discovered that 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine exhibits specific antitrypanosomal activity toward T. b. rhodesiense, the causative agent of the acute form of HAT. Here we applied a chemical proteomics approach to find the cellular target of this compound. Adenosine kinase, a key enzyme of the parasite purine salvage pathway, was isolated and identified as compound binding partner. Direct binding assays using recombinant protein, and tests on an adenosine kinase knock-down mutant of the parasite produced by RNA interference confirmed TbrAK as the putative target. Kinetic analyses showed that the title compound is an activator of adenosine kinase and that the observed hyperactivation of TbrAK is due to the abolishment of the intrinsic substrate-inhibition. Whereas hyperactivation as a mechanism of action is well known from drugs targeting cell signaling, this is a novel and hitherto unexplored concept for compounds targeting metabolic enzymes, suggesting that hyperactivation of TbrAK may represent a novel therapeutic strategy for the development of trypanocides

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis

    Get PDF
    For decades, identifying the regions of a bacterial chromosome that are necessary for viability has relied on mapping integration sites in libraries of random transposon mutants to find loci that are unable to sustain insertion. To date, these studies have analyzed subsaturated libraries, necessitating the application of statistical methods to estimate the likelihood that a gap in transposon coverage is the result of biological selection and not the stochasticity of insertion. As a result, the essentiality of many genomic features, particularly small ones, could not be reliably assessed. We sought to overcome this limitation by creating a completely saturated transposon library in Mycobacterium tuberculosis. In assessing the composition of this highly saturated library by deep sequencing, we discovered that a previously unknown sequence bias of the Himar1 element rendered approximately 9% of potential TA dinucleotide insertion sites less permissible for insertion. We used a hidden Markov model of essentiality that accounted for this unanticipated bias, allowing us to confidently evaluate the essentiality of features that contained as few as 2 TA sites, including open reading frames (ORF), experimentally identified noncoding RNAs, methylation sites, and promoters. In addition, several essential regions that did not correspond to known features were identified, suggesting uncharacterized functions that are necessary for growth. This work provides an authoritative catalog of essential regions of the M. tuberculosis genome and a statistical framework for applying saturating mutagenesis to other bacteria
    corecore