1,949 research outputs found

    Melanoma in congenital melanocytic naevi

    Get PDF
    Congenital melanocytic naevi (CMN) are a known risk factor for melanoma, with the greatest risk currently thought to be in childhood. There has been controversy over the years about the incidence, and therefore over clinical management of CMN, due partly to the difficulties of histological diagnosis and partly to publishing bias towards cases of malignancy. Large cohort studies have demonstrated that risk in childhood is related to the severity of the congenital phenotype, not only cutaneous but neuroradiological. New understanding of the genetics of CMN offers the possibility of improvement in diagnosis of melanoma, identification of those at highest risk, and new treatment options. We review the world literature and our centre's experience over the last 25 years, including the molecular characteristics of melanoma in these patients and new melanoma incidence and outcome data from our prospective cohort. Management strategies are proposed for presentation of suspected melanoma of the skin and the CNS in patients with CMN, including use of oral MEK inhibitors in NRAS-mutated tumours. This article is protected by copyright. All rights reserved

    Evaluation of land surface models in reproducing satellite-derived LAI over the high-latitude northern hemisphere. Part I: Uncoupled DGVMs

    Get PDF
    PublishedJournal ArticleLeaf Area Index (LAI) represents the total surface area of leaves above a unit area of ground and is a key variable in any vegetation model, as well as in climate models. New high resolution LAI satellite data is now available covering a period of several decades. This provides a unique opportunity to validate LAI estimates from multiple vegetation models. The objective of this paper is to compare new, satellite-derived LAI measurements with modeled output for the Northern Hemisphere. We compare monthly LAI output from eight land surface models from the TRENDY compendium with satellite data from an Artificial Neural Network (ANN) from the latest version (third generation) of GIMMS AVHRR NDVI data over the period 1986-2005. Our results show that all the models overestimate the mean LAI, particularly over the boreal forest. We also find that seven out of the eight models overestimate the length of the active vegetation-growing season, mostly due to a late dormancy as a result of a late summer phenology. Finally, we find that the models report a much larger positive trend in LAI over this period than the satellite observations suggest, which translates into a higher trend in the growing season length. These results highlight the need to incorporate a larger number of more accurate plant functional types in all models and, in particular, to improve the phenology of deciduous trees. © 2013 by the authors.The corresponding author also thanks the CONACYT-CECTI and the University of Exeter for their funding during the PhD studies. The National Center for Atmospheric Research is sponsored by the National Science Foundation

    Observation of confined current ribbon in JET plasmas

    Get PDF
    we report the identification of a localised current structure inside the JET plasma. It is a field aligned closed helical ribbon, carrying current in the same direction as the background current profile (co-current), rotating toroidally with the ion velocity (co-rotating). It appears to be located at a flat spot in the plasma pressure profile, at the top of the pedestal. The structure appears spontaneously in low density, high rotation plasmas, and can last up to 1.4 s, a time comparable to a local resistive time. It considerably delays the appearance of the first ELM.Comment: 10 pages, 6 figure

    The global carbon budget 1959-2011

    Get PDF
    Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics, while emissions from Land-Use Change (ELUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms. For the last decade available (2002–2011), EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011 compared to the 2002–2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Niña conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 ± 0.13 ppm at the end of year 2011. We estimate that EFF will have increased by 2.6% (1.9–3.5%) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as ±1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future

    Heme metabolism genes Downregulated in COPD Cachexia.

    Get PDF
    IntroductionCachexia contributes to increased mortality and reduced quality of life in Chronic Obstructive Pulmonary Disease (COPD) and may be associated with underlying gene expression changes. Our goal was to identify differential gene expression signatures associated with COPD cachexia in current and former smokers.MethodsWe analyzed whole-blood gene expression data from participants with COPD in a discovery cohort (COPDGene, N = 400) and assessed replication (ECLIPSE, N = 114). To approximate the consensus definition using available criteria, cachexia was defined as weight-loss > 5% in the past 12 months or low body mass index (BMI) (< 20 kg/m2) and 1/3 criteria: decreased muscle strength (six-minute walk distance < 350 m), anemia (hemoglobin < 12 g/dl), and low fat-free mass index (FFMI) (< 15 kg/m2 among women and < 17 kg/m2 among men) in COPDGene. In ECLIPSE, cachexia was defined as weight-loss > 5% in the past 12 months or low BMI and 3/5 criteria: decreased muscle strength, anorexia, abnormal biochemistry (anemia or high c-reactive protein (> 5 mg/l)), fatigue, and low FFMI. Differential gene expression was assessed between cachectic and non-cachectic subjects, adjusting for age, sex, white blood cell counts, and technical covariates. Gene set enrichment analysis was performed using MSigDB.ResultsThe prevalence of COPD cachexia was 13.7% in COPDGene and 7.9% in ECLIPSE. Fourteen genes were differentially downregulated in cachectic versus non-cachectic COPD patients in COPDGene (FDR < 0.05) and ECLIPSE (FDR < 0.05).DiscussionSeveral replicated genes regulating heme metabolism were downregulated among participants with COPD cachexia. Impaired heme biosynthesis may contribute to cachexia development through free-iron buildup and oxidative tissue damage

    Identification of a rare p.G320R alpha-1-antitrypsin variant in emphysema and lung cancer patients

    Get PDF
    The alpha-1-antitrypsin (A1AT) gene is highly polymorphic, with more than 100 genetic variants identified of which some can affect A1AT protein concentration and/or function and lead to pulmonary and/or liver disease. This study reports on the characterization of a p.G320R variant found in two patients, one with emphysema and the other with lung cancer. This variant results from a single base-pair substitution in exon 4 of the A1AT gene, and has been characterized as P by isoelectric focusing. Functional evaluation of the A1AT p.G320R variant was through comparing specific trypsin inhibitory activity in two patients with pulmonary disorders, carriers of the p.G320R variant, and 19 healthy individuals, carriers of normal A1AT M variants. Results showed that specific trypsin inhibitory activity was lower in both emphysema (2.45 mU/g) and lung cancer (2.07 mU/g) patients than in carriers of the normal variants (range 2.51-3.71 mU/g). This rare A1AT variant is associated with reduced functional activity of A1AT protein. Considering that it was found in patients with severe pulmonary disorders, this variant could be of clinical significance

    The Effect of ICS Withdrawal and Baseline Inhaled Treatment on Exacerbations in the IMPACT Study: A Randomized, Double-blind Multicenter Trial

    Get PDF
    RATIONALE: In the IMPACT trial fluticasone furoate/umeclidinium/ vilanterol (FF/UMEC/VI) significantly reduced exacerbations compared with FF/VI or UMEC/VI in patients with symptomatic chronic obstructive pulmonary disease and a history of exacerbations. OBJECTIVES: Understand whether inhaled corticosteroid (ICS) withdrawal affected IMPACT results given direct transition from prior maintenance medication to study medication at randomization. METHODS: Exacerbations and change from baseline in trough forced expiratory volume in 1 second (FEV1) and St George's Respiratory Questionnaire (SGRQ) were analyzed by prior ICS use. Exacerbations were also analyzed excluding data from the first 30 days. MEASUREMENTS AND MAIN RESULTS: FF/UMEC/VI significantly reduced annual moderate/severe exacerbation rate versus UMEC/VI in prior ICS users (29% reduction; p<0.001), but only a numerical reduction was seen among prior ICS non-users (12% reduction; p=0.115). To minimize impact from ICS withdrawal, in an analysis excluding the first 30 days, FF/UMEC/VI continued to significantly reduce annual on-treatment moderate/severe exacerbation rate (19%; p<0.001) versus UMEC/VI. Benefit of FF/UMEC/VI versus UMEC/VI was seen for severe exacerbation rates, regardless of prior ICS use (prior ICS users: 35% reduction, p<0.001; non-ICS users: 35% reduction, p=0.018) and overall when excluding the first 30 days (29%, p<0.001). Improvements from baseline with FF/UMEC/VI versus UMEC/VI were also maintained throughout the study for both trough FEV1 and SGRQ regardless of prior ICS use. CONCLUSIONS: These data support important treatment effects from FF/UMEC/VI combination therapy on exacerbation reduction, lung function and quality of life that do not appear to be related to abrupt ICS withdrawal. FUNDING: GSK (CTT116855/NCT02164513). Clinical trial registration available at www.clinicaltrials.gov, ID: NCT02164513. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Multicriteria evaluation of discharge simulation in Dynamic Global Vegetation Models

    Get PDF
    PublishedJournal Article© 2015. American Geophysical Union. All Rights Reserved. In this study, we assessed the performance of discharge simulations by coupling the runoff from seven Dynamic Global Vegetation Models (DGVMs; LPJ, ORCHIDEE, Sheffield-DGVM, TRIFFID, LPJ-GUESS, CLM4CN, and OCN) to one river routing model for 16 large river basins. The results show that the seasonal cycle of river discharge is generally modeled well in the low and middle latitudes but not in the high latitudes, where the peak discharge (due to snow and ice melting) is underestimated. For the annual mean discharge, the DGVMs chained with the routing model show an underestimation. Furthermore, the 30 year trend of discharge is also underestimated. For the interannual variability of discharge, a skill score based on overlapping of probability density functions (PDFs) suggests that most models correctly reproduce the observed variability (correlation coefficient higher than 0.5; i.e., models account for 50% of observed interannual variability) except for the Lena, Yenisei, Yukon, and the Congo river basins. In addition, we compared the simulated runoff from different simulations where models were forced with either fixed or varying land use. This suggests that both seasonal and annual mean runoff has been little affected by land use change but that the trend itself of runoff is sensitive to land use change. None of the models when considered individually show significantly better performances than any other and in all basins. This suggests that based on current modeling capability, a regional-weighted average of multimodel ensemble projections might be appropriate to reduce the bias in future projection of global river discharge.National Natural Science Foundation of China. Grant Numbers: 41125004, 31321061, Chinese Ministry of Environmental Protection. Grant Number: 201209031, 111 Project. Grant Number: B14001, National Youth Top-notch Talent Support Program in China, Imbalance-P ERC-synergy, TRENDY, Global River Discharge Cente
    corecore