9 research outputs found

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    High-throughput whole-genome sequencing to dissect the epidemiology of acinetobacter baumannii isolates from a hospital outbreak

    Get PDF
    Shared care of military and civilian patients has resulted in transmission of multidrug-resistant Acinetobacter baumannii (MDR-Aci) from military casualties to civilians. Current typing technologies have been useful in revealing relationships between isolates of A. baumannii but they are unable to resolve differences between closely related isolates from small-scale outbreaks, where chains of transmission are often unclear. In a recent hospital outbreak in Birmingham, six patients were colonised with MDR-Aci isolates indistinguishable using standard techniques. We used whole-genome sequencing to identify single nucleotide polymorphisms in these isolates, allowing us to discriminate between alternative epidemiological hypotheses in this setting

    Ebola virus persistence in breast milk after no reported illness: A likely source of virus transmission from mother to child.

    No full text
    A 9-month-old infant died from Ebola virus (EBOV) disease with unknown epidemiological link. While her parents did not report previous illness, laboratory investigations revealed persisting EBOV RNA in the mother's breast milk and the father's seminal fluid. Genomic analysis strongly suggests EBOV transmission to the child through breastfeeding

    Genomic epidemiology of SARS-CoV-2 in a university outbreak setting and implications for public health planning

    Get PDF
    Whole genome sequencing of SARS-CoV-2 has occurred at an unprecedented scale, and can be exploited for characterising outbreak risks at the fine-scale needed to inform control strategies. One setting at continued risk of COVID-19 outbreaks are higher education institutions, associated with student movements at the start of term, close living conditions within residential halls, and high social contact rates. Here we analysed SARS-CoV-2 whole genome sequences in combination with epidemiological data to investigate a large cluster of student cases associated with University of Glasgow accommodation in autumn 2020, Scotland. We identified 519 student cases of SARS-CoV-2 infection associated with this large cluster through contact tracing data, with 30% sequencing coverage for further analysis. We estimated at least 11 independent introductions of SARS-CoV-2 into the student population, with four comprising the majority of detected cases and consistent with separate outbreaks. These four outbreaks were curtailed within a week following implementation of control measures. The impact of student infections on the local community was short-term despite an underlying increase in community infections. Our study highlights the need for context-specific information in the formation of public health policy for higher educational settings

    Virus genomes reveal factors that spread and sustained the Ebola epidemic

    No full text
    The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic 'gravity' model, with intense dispersal between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border transmission had already sown the seeds for an international epidemic, rendering these measures ineffective at curbing the epidemic. We address why the epidemic did not spread into neighbouring countries, showing that these countries were susceptible to substantial outbreaks but at lower risk of introductions. Finally, we reveal that this large epidemic was a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will help to inform interventions in future epidemics
    corecore