2,666 research outputs found

    Nectar-inhabiting bacteria: Effects on egg parasitoids of invasive stink bugs

    Get PDF
    Pests and diseases account for 40% of the food crop losses worldwide [1]. In the era of climate change and global trade, pest occurrence is projected to rise, subsequently increasing the losses in crop production [2]. In this gloomy scenario, it is more than ever crucial to reinforce the resilience of our agroecosystems [3]. Increasing plant diversity in the agricultural landscape leads to a rise in the diversity and abundance of natural enemies of pests [4, 5], such as predators and parasitoids, which are involved in biological control of insect pests. However, the increased occurrence of these natural enemies does not necessarily translate into reductions in pest occurrence [6, 7]. There may be various factors behind this discrepancy. Flowering plants are assumed to improve parasitoid performance by providing food resources, such as nectar, which is a sugar-rich solution on which adult parasitoids rely for their energetic and nutritional needs [8]. However, we still do not understand how floral provisioning contributes to the efficiency of pest suppression by parasitoids. A hidden component may be the colonisation of nectar by microbes, which alter its quality [9]. In this study, the performance of the following three parasitoids was observed: Trissolcus basalis, Ooencyrtus telenomicida and Anastatus bifasciatus. These parasitoids are important in terms of pest control [10] since they attack the eggs of the invasive stink bugs, which have gained a global importance as plant health threats [11, 12]. Nectar was provided ad libitum to female adults that remained in vials. The nectar provided was either fermented by different microbes or non-fermented nectar (control). All microbes were bacteria, which had been previously isolated from the nectar of Fagopyrum esculentum, and belonged to the phyla Firmicutes, Proteobacteria and Actinobacteria. The parasitoids performance was assessed in terms of the number of days during which the insects remained alive. Moreover, the attraction of parasitoids to the bacteria- fermented nectar versus non-fermented nectar was studied by using a four-chamber static olfactometer [13]. The olfactometer consisted of an arena for the insect to walk on and, below the arena, it was divided equally into four chambers, in which the nectar solution was kept on a filter paper. The parasitoids attraction was assessed in terms of their residence time on top of the chambers. Overall, this work highlights the importance of considering the role of nectar-inhabiting microbes in shaping the interactions between parasitoids and their food resources. The results will be discussed in terms of biological control

    Use of QT intervals for a more accurate diagnose of syncope and evaluation of syncope severity.

    Get PDF
    Abstract BACKGROUND: This study aimed to evaluate the use of QT intervals, their diagnostic predictive value in patients with syncope and their relationship with syncope severity. METHODS: One hundred and forty nine patients with a diagnosis of syncope were admitted to Internal Medicine departments at the University of Palermo, Italy, between 2006 and 2012, and 140 control subjects hospitalised for other causes were enrolled. QT maximum, QT minimum, QTpeak, QT corrected, QT dispersion and Tpeak-to-Tend interval were compared between two groups. The paper medical records were used for scoring with San Francisco Syncope Rule (SFSR), Evaluation of Guidelines in SYncope Study (EGSYS) score and Osservatorio Epidemiologico sulla Sincope nel Lazio (OESIL) risk score. RESULTS: Mean QTc (p 424.8 ms (sensibility: 81.88 - specificity: 57.86) showed the greatest predictive value for diagnosis of syncope. On the EGSYS score and on the OESIL score, QTc was significantly prolonged in high-risk patients compared with low-risk patients. On the San Francisco Syncope Rule, QTc and QTdisp were significantly prolonged in high-risk patients compared with low-risk patients. CONCLUSION: Mean QTc, mean QTdisp, mean TpTe, mean QTmax and mean QTpeak were significantly longer in patients with syncope compared with control subjects. Furthermore, prolonged QTc and QTdisp were associated with major severe syncope according to San Francisco Syncope Rule, EGSYS and OESIL risk scores

    Observation of time-invariant coherence in a nuclear magnetic resonance quantum simulator

    Get PDF
    The ability to live in coherent superpositions is a signature trait of quantum systems and constitutes an irreplaceable resource for quantum-enhanced technologies. However, decoherence effects usually destroy quantum superpositions. It has been recently predicted that, in a composite quantum system exposed to dephasing noise, quantum coherence in a transversal reference basis can stay protected for indefinite time. This can occur for a class of quantum states independently of the measure used to quantify coherence, and requires no control on the system during the dynamics. Here, such an invariant coherence phenomenon is observed experimentally in two different setups based on nuclear magnetic resonance at room temperature, realising an effective quantum simulator of two- and four-qubit spin systems. Our study further reveals a novel interplay between coherence and various forms of correlations, and highlights the natural resilience of quantum effects in complex systems

    Residual vein thrombosis for assessing duration of anticoagulation after unprovoked deep vein thrombosis of the lower limbs: the extended DACUS study.

    Get PDF
    Abstract The safest duration of anticoagulation after idiopathic deep vein thrombosis (DVT) is unknown. We conducted a prospective study to assess the optimal duration of vitamin K antagonist (VKA) therapy considering the risk of recurrence of thrombosis according to residual vein thrombosis (RVT). Patients with a first unprovoked DVT were evaluated for the presence of RVT after 3 months of VKA administration; those without RVT suspended VKA, while those with RVT continued oral anticoagulation for up to 2 years. Recurrent thrombosis and/or bleeding events were recorded during treatment (RVT group) and 1 year after VKA withdrawal (both groups). Among 409 patients evaluated for unprovoked DVT, 33.2% (136 of 409 patients) did not have RVT and VKA was stopped. The remaining 273 (66.8%) patients with RVT received anticoagulants for an additional 21 months; during this period of treatment, recurrent venous thromboembolism and major bleeding occurred in 4.7% and 1.1% of patients, respectively. After VKA suspension, the rates of recurrent thrombotic events were 1.4% and 10.4% in the no-RVT and RVT groups, respectively (relative risk = 7.4; 95% confidence interval = 4.9-9.9). These results indicate that in patients without RVT, a short period of treatment with a VKA is sufficient; in those with persistent RVT, treatment extended to 2 years substantially reduces, but does not eliminate, the risk of recurrent thrombosis

    Frozen and Invariant Quantum Discord under Local Dephasing Noise

    Full text link
    In this chapter, we intend to explore and review some remarkable dynamical properties of quantum discord under various different open quantum system models. Specifically, our discussion will include several concepts connected to the phenomena of time invariant and frozen quantum discord. Furthermore, we will elaborate on the relation of these two phenomena to the non-Markovian features of the open system dynamics and to the usage of dynamical decoupling protocols.Comment: 29 pages, 8 figure

    Usefulness and limitations of comprehensive characterization of mRNA splicing profiles in the definition of the clinical relevance of BRCA1/2 variants of uncertain significance

    Get PDF
    Highly penetrant variants of BRCA1/2 genes are involved in hereditary predisposition to breast and ovarian cancer. The detection of pathogenic BRCA variants has a considerable clinical impact, allowing appropriate cancer-risk management. However, a major drawback is represented by the identification of variants of uncertain significance (VUS). Many VUS potentially affect mRNA splicing, making transcript analysis an essential step for the definition of their pathogenicity. Here, we characterize the impact on splicing of ten BRCA1/2 variants. Aberrant splicing patterns were demonstrated for eight variants whose alternative transcripts were fully characterized. Different events were observed, including exon skipping, intron retention, and usage of de novo and cryptic splice sites. Transcripts with premature stop codons or in-frame loss of functionally important residues were generated. Partial/complete splicing effect and quantitative contribution of different isoforms were assessed, leading to variant classification according to Evidence-based Network for the Interpretation of Mutant Alleles (ENIGMA) consortium guidelines. Two variants could be classified as pathogenic and two as likely benign, while due to a partial splicing effect, six variants remained of uncertain significance. The association with an undefined tumor risk justifies caution in recommending aggressive risk-reduction treatments, but prevents the possibility of receiving personalized therapies with potential beneficial effect. This indicates the need for applying additional approaches for the analysis of variants resistant to classification by gene transcript analyses

    High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERN

    Get PDF
    A new high flux experimental area has recently become operational at the n_TOF facility at CERN. This new measuring station, n_TOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutron-converting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197Au foils in the beam.Peer reviewe

    Measurement of the 240Pu(n,f) cross-section at the CERN n-TOF facility : First results from experimental area II (EAR-2)

    Get PDF
    The accurate knowledge of the neutron-induced fission cross-sections of actinides and other isotopes involved in the nuclear fuel cycle is essential for the design of advanced nuclear systems, such as Generation-IV nuclear reactors. Such experimental data can also provide the necessary feedback for the adjustment of nuclear model parameters used in the evaluation process, resulting in the further development of nuclear fission models. In the present work, the 240Pu(n,f) cross-section was measured at CERN's n-TOF facility relative to the well-known 235U(n,f) cross section, over a wide range of neutron energies, from meV to almost MeV, using the time-of-flight technique and a set-up based on Micromegas detectors. This measurement was the first experiment to be performed at n-TOF's new experimental area (EAR-2), which offers a significantly higher neutron flux compared to the already existing experimental area (EAR-1). Preliminary results as well as the experimental procedure, including a description of the facility and the data handling and analysis, are presented

    Measurement of 73 Ge(n,Îł) cross sections and implications for stellar nucleosynthesis

    Get PDF
    © 2019 The Author(s). Published by Elsevier B.V.73 Ge(n,γ) cross sections were measured at the neutron time-of-flight facility n_TOF at CERN up to neutron energies of 300 keV, providing for the first time experimental data above 8 keV. Results indicate that the stellar cross section at kT=30 keV is 1.5 to 1.7 times higher than most theoretical predictions. The new cross sections result in a substantial decrease of 73 Ge produced in stars, which would explain the low isotopic abundance of 73 Ge in the solar system.Peer reviewe

    The measurement programme at the neutron time-of-flight facility n-TOF at CERN

    Get PDF
    Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN's neutron time-of-flight facility n-TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n-TOF will be presented
    • 

    corecore