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The ability to live in coherent superpositions is a signature trait of quantum systems and constitutes an irre-
placeable resource for quantum-enhanced technologies. However, decoherence effects usually destroy quantum
superpositions. It has been recently predicted that, in a composite quantum system exposed to dephasing noise,
quantum coherence in a transversal reference basis can stay protected for indefinite time. This can occur for a
class of quantum states independently of the measure used to quantify coherence, and requires no control on
the system during the dynamics. Here, such an invariant coherence phenomenon is observed experimentally in
two different setups based on nuclear magnetic resonance at room temperature, realising an effective quantum
simulator of two- and four-qubit spin systems. Our study further reveals a novel interplay between coherence
and various forms of correlations, and highlights the natural resilience of quantum effects in complex systems.

Successfully harnessing genuine nonclassical effects is pre-
dicted to herald a new wave of technological devices with a
disruptive potential to supersede their conventional counter-
parts [1]. This prediction is now coming of age, and an inter-
national race is on to translate the power of quantum technolo-
gies into commercial applications to networked communica-
tion, computing, imaging, sensing and simulation [2]. Quan-
tum coherence [3], which incarnates the wavelike nature of
matter and the essence of quantum parallelism [4], is the pri-
mary ingredient enabling a supraclassical performance in a
wide range of such applications. Its key role in quantum al-
gorithms, optics, metrology, condensed matter physics, and
nanoscale thermodynamics is actively investigated and widely
recognised [5–13]. Furthermore, coherent quantum effects
have been observed in large molecules [14] and are advo-
cated to play a functional role in even larger biological com-
plexes [15–18]. However, coherence is an intrinsically frag-
ile property which typically vanishes at macroscopic scales of
space, time, and temperature: the disappearance of coherence,
i.e. decoherence [19], in quantum systems exposed to environ-
mental noise is one of the major hindrances still threatening
the scalability of most quantum machines. Numerous efforts
have been thus invested in recent years into devising feasi-
ble control schemes to preserve coherence in open quantum
systems [20], with notable examples including dynamical de-
coupling [21, 22], quantum feedback control [23] and error
correcting codes [24].

In this Letter we demonstrate a fundamentally different
mechanism. We observe experimentally that quantum coher-
ence in a composite system, whose subsystems are all affected
by decoherence, can remain de facto invariant for arbitrarily
long time without any external control. This phenomenon was
recently predicted to occur for a particular family of initial
states of quantum systems of any (however large) even num-

ber of qubits [25], and is here demonstrated in a room temper-
ature liquid-state nuclear magnetic resonance (NMR) quan-
tum simulator [29–33] with two different molecules, encom-
passing two-qubit and four-qubit spin ensembles. After ini-
tialisation into a so-called generalised Bell diagonal state [25],
the multiqubit ensemble is left to evolve under naturally oc-
curring phase damping noise. Constant coherence in a refer-
ence basis (transversal to the noise direction) is then observed
within the experimentally considered timescales up to the or-
der of a second. Coherence is measured according to a vari-
ety of recently proposed quantifiers [26], and its permanence
is verified to be measure-independent. We also reveal how
coherence captures quantitatively a dynamical interplay be-
tween classical and general quantum correlations [34], while
any entanglement may rapidly disappear [35]. For more gen-
eral initial states, we prove theoretically that coherence can
decay yet remains above a guaranteed threshold at any time,
and we observe this experimentally in the two-qubit instance.
The present study advances our physical understanding of the
resilience of quantum effects against decoherence.

Quantum coherence manifests when a quantum system is in
a superposition of multiple states taken from a reference ba-
sis. The reference basis can be indicated by the physics of the
problem under investigation (e.g. one may focus on the energy
eigenbasis when addressing coherence in transport phenom-
ena and thermodynamics) or by a task for which coherence
is required (e.g. the estimation of a magnetic field in a cer-
tain direction). Here, for an N-qubit system, having in mind
a magnetometry setting [36], we can fix the reference basis to
be the ‘plus/minus’ basis {|±〉⊗N}, where {|±〉} are the eigen-
states of the σ1 Pauli operator, which describes the x compo-
nent of the spin on each qubit [24]. Any state with density
matrix δ diagonal in the plus/minus basis will be referred to
as incoherent. According to a recently formulated resource
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FIG. 1. A: Pulse sequence to prepare two-qubit BD
states encoded in the 1H and 13C nuclear spins of Chlo-
roform; the rf pulse (θ)µ realises a qubit rotation by θ
about the spin-µ axis, J is the scalar spin-spin cou-
pling, and time flows from left to right. B: Dynam-
ics of the experimental states ρ(t) (magenta points)
in the space of the spin-spin correlation triple c j =

〈σ j ⊗ σ j〉, j = 1, 2, 3; all BD states (2) fill the light
blue tetrahedron, while the subclass of states spanning
the inscribed green surface are predicted to have time-
invariant coherence in the plus/minus basis according
to any measure of Eq. (1) [25]. C–F: full tomogra-
phies of the experimental states as prepared at time
t = 0 (C, D) and after t = 0.25 s of free evolution
(E, F), recorded in the computational basis (top row)
and in the plus/minus basis (bottom row). G: Evolu-
tion of (absolute values of) the correlation functions
|c j | in the experimental states (points), along with the-
oretical predictions (solid lines) based on phase damp-
ing noise with our measured relaxation times. H: Ex-
perimental observation of time-invariant coherence (in
the plus/minus basis), measured by relative entropy
(red circles) [26], fidelity-based measure (blue trian-
gles) [27], and normalised trace distance (green dia-
monds) [25], equal to l1 norm [26] in BD states. The
slight negative slope is due to the subdominant effect
of amplitude damping. I: Experimental dynamics of
coherence and all forms of correlations [28] measured
via relative entropies (theoretical curves omitted for
graphical clarity). In panels G–I, experimental errors
due to small pulse imperfections (0.3% per pulse) re-
sult in error bars within the size of the data points.

theory [3, 26, 27, 37], the degree of quantum coherence in the
state ρ of a quantum system can be quantified in terms of how
distinguishable ρ is from the set of incoherent states,

CD(ρ) = inf
δ incoherent

D(ρ, δ) , (1)

where the distance D is assumed jointly convex and contrac-
tive under quantum channels, as detailed in the Supplemental
Material [38]. In general, different measures of coherence in-
duce different orderings on the space of quantum states, as it
happens e.g. for entanglement or other resources. A conse-
quence of this is that, for states of a single qubit, it is impossi-
ble to find a nontrivial noisy dynamics under which coherence
is naturally preserved when measured with respect to all possi-
ble choices of D in Eq. (1). As predicted in [25], such a coun-
terintuitive situation can occur instead for larger composite
systems. Here we observe this phenomenon experimentally.

Our NMR setup realises an effective quantum simulator,
in which N-qubit states ρ can be prepared by manipulating
the deviation matrix from the thermal equilibrium density
operator of a spin ensemble [29, 31], via application of ra-
diofrequency (rf) pulses and evolution under spin interactions
[24, 33]. The scalability of the setup relies on availability of
suitably large controllable molecules in liquid-state solutions.

We first encoded a two-qubit system in a Chloroform
(CHCl3) sample enriched with 13C, where the 1H and 13C
spin- 1

2 nuclei are associated to the first and second qubit, re-
spectively. This experiment was performed in a Varian 500
MHz liquid-NMR spectrometer at room temperature, accord-
ing to the plan illustrated in Fig. 1A. The state preparation
stage allowed us to initialise the system in any state obtained
as a mixture of maximally entangled Bell states, that is, any

Bell diagonal (BD) state [47]. These states take the form

ρ = 1
4

(
I ⊗ I +

∑3
j=1 c j σ j ⊗ σ j

)
, (2)

where {σ j} are the Pauli matrices and I is the identity operator
on each qubit; they are completely specified by the spin-spin
correlation functions c j = 〈σ j ⊗σ j〉 for j = 1, 2, 3, and can be
conveniently represented in the space spanned by these three
parameters as depicted in Fig. 1B. We aimed to prepare specif-
ically a BD state with initial correlation functions c1(0) = 1,
c2(0) = 0.7 and c3(0) = −0.7, by first initialising the system in
the pseudo-pure state |00〉〈00| as described in Refs. [24, 29],
and then implementing the sequence of rf pulses shown in
Fig. 1A with θ = π and α = arccos(−0.7) ≈ 134◦.

After state preparation, the system was allowed to evolve
freely during a period of time t, with t increased for each trial
in increments of 2/J from 0 to 0.5 s (where J ≈ 215 Hz is
the scalar spin-spin coupling constant [38]), in order to ob-
tain the complete dynamics. In the employed setup, the two
main sources of decoherence can be modelled as Markovian
phase damping and generalised amplitude damping channels
acting on each qubit, with characteristic relaxation times T2
and T1, respectively [38]. For our system, the relaxation times
were measured as T H

1 = 7.53 s, T H
2 = 0.14 s, TC

1 = 12.46
s, TC

2 = 0.90 s which implies that T H,C
1 � T H,C

2 . Therefore,
considering also the time domain of the experiment, only the
phase damping noise can be seen to have a dominant effect.

The final stage consisted of performing full quantum state
tomography for each interval of time t, following the proce-
dure detailed in [38, 48]. Instances of the reconstructed ex-
perimental states at t = 0 and t = 0.25 s are presented in
Fig. 1C–F. The fidelity of the initial state with the ideal target
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was measured at 99.1%, testifying the high degree of accuracy
of our preparation stage. We verified that the evolved state re-
mained of the BD form (2) during the whole dynamics with
fidelities above 98.5%: we could then conveniently visualise
the dynamics focusing on the evolution of the spin-spin corre-
lation triple {c j(t)}, as indicated by magenta points in Fig. 1B.
The time evolution of the triple {c j(t)} is detailed in Fig. 1G.

From the acquired state tomographies during the relaxation
progress, we measured the dynamics of quantum coherence in
our states adopting all the known geometric coherence mono-
tones proposed in the literature, as shown in Fig. 1H. All quan-
tifiers were found simultaneously constant within the experi-
mental confidence levels, revealing a universal resilience of
quantum coherence in the dynamics under investigation. Note
that the observed time-invariant coherence is a nontrivial fea-
ture which only occurs under particular dynamical conditions.
A theoretical analysis [25, 38] predicts in fact that, for all BD
states evolving such that their spin-spin correlations obey the
condition c2(t) = −c1(t)c3(t) (corresponding to the lime green
surface in Fig. 1B), any valid measure of coherence as de-
fined in Eq. (1) with respect to the plus/minus basis should
remain constant at any time t. As evident from the placement
of the data points in Fig. 1B, our setup realised precisely the
predicted dynamical conditions for time-invariant coherence,
with no further control during the relaxation. Our experi-
ment thus demonstrated a nontrivial spontaneous occurrence
of long-lived quantum coherence under Markovian dynamics.

We remark that the observed effect is distinct from the phys-
ical mechanism of long-lived singlet states also studied in
NMR [49], and from an instance of decoherence-free sub-
space [50]. In the latter case, an open system dynamics can
act effectively as a unitary evolution on a subset of quan-
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FIG. 2. A: Modified preparation stage to engineer non-BD two-qubit states.
We prepared two states ρ1 and ρ2 with purity 0.92 and 0.93 respectively, set-
ting phases θ ≈ 0.94 rad, α = π/3 for ρ1, and θ ≈ 0.78 rad, α = π/2 for ρ2.
The evolution and acquisition stages were as in Fig. 1A. Full tomographies of
the produced states at t = 0 are presented in: C (ρ1, computational basis), D
(ρ1, plus/minus basis), E (ρ2, computational basis), and F (ρ2, plus/minus ba-
sis). B: Dynamics of the relative entropy of coherence in the prepared states,
along with the lower bound inferred from the evolution of their spin-spin cor-
relation functions. The experimental errors are estimated as in Fig. 1.

tum states, automatically preserving their entropy and other
informational properties. In our case, the states are instead
degraded with time, but only their coherence in the consid-
ered reference basis remains unaffected. We verified this by
measuring other indicators of correlations [28] in our states
as a function of time. Fig. 1I shows the dynamics of entan-
glement, classical, quantum, and total correlations (defined in
[38]), as well as coherence. While entanglement is found to
undergo a sudden death [35, 51] at ≈ 0.21 s, a sharp transi-
tion between the decay of classical and quantum correlations
is observed at the switch time t? =

T H
2 TC

2
T H

2 +TC
2

ln
∣∣∣∣ c1(0)

c3(0)

∣∣∣∣ ≈ 0.043
s. Such a puzzling feature has been reported earlier theoreti-
cally [34, 52] and experimentally [47, 53, 54], but here we re-
veal the prominent role played by coherence in this dynamical
picture. Namely, coherence in the plus/minus basis is found
equal to quantum correlations before t? and to classical ones
after t?, thus remaining constant at all times. This novel in-
terplay between coherence and correlations, observed in our
natural decohering conditions, is expected to manifest for any
valid choice of geometric quantifiers used to measure the in-
volved quantities [25]; for instance, in Fig. 1I we picked all
measures based on relative entropy.

One might wonder how general the reported phenomena are
if the initial states differ from the BD states of Eq. (2). In [38]
we prove that, given an arbitrary state ρ with spin-spin corre-
lation functions {c j}, its coherence with respect to any basis is
always larger than the coherence of the generalised BD state
defined by the same correlation functions. This entails that,
even if coherence in arbitrary states may decay under noise,
it will stay above a threshold guaranteed by the coherence
of corresponding BD states. To demonstrate this, we mod-
ified our preparation scheme to engineer more general two-
qubit states (Fig. 2A). We prepared two different pseudo-pure
states ρ1 and ρ2, both with matching initial correlation triple
c1(0) = 0.95, c2(0) = 0.62, c3(0) = −0.65, within the exper-
imental accuracy. We then measured their coherence dynam-
ics under natural evolution as before. For both of them, we
observed a decay of coherence (albeit with different rates) to-
wards a common time-invariant lower bound, which was de-
termined solely by the evolution of the spin-spin correlation
functions, regardless of the specifics of the states (Fig. 2B).

Finally, we investigated experimentally the resilience of co-
herence in a larger system, composed of four logical qubits.
To this aim, we performed a more advanced NMR demon-
stration in a BRUKER AVIII 600 MHz spectrometer equipped
with a prototype 6-channel probe head, allowing full and inde-
pendent control of up to 5 different nuclear spins [30, 32]. We
used the 13CO-15N-diethyl-(dimethylcarbamoyl)fluoromethyl-
phosphonate compound [32], whose coupling topology is
shown in Fig. 3A. This molecule contains 5 NMR-active spins
(1H, 19F, 13C, 31P and 15N), therefore we chose to decou-
ple 15N and encode our four-qubit system in the remaining
spins. Each pair of spins k, l = {H, F,C, P} were coupled to
each other by suitable scalar constants Jkl [38]. We employed
an ‘Insensitive Nuclei Enhanced by Polarization Transfer’
(INEPT)-like procedure [55] to prepare a generalised BD state
ρ(0) = 1

16
(
I⊗4 + c1(0)σ⊗4

1 + c2(0)σ⊗4
2 + c3(0)σ⊗4

3
)

with initial
correlation functions c1(0) = 1, c2(0) = c3(0) = 0.7 [38], as
detailed in Fig. 3A. After evolution in a natural phase damping
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FIG. 3. A: Pulse sequence (with time flowing from left to right) to prepare four-qubit generalised Bell states encoded in the 1H, 19F, 13C, and 31P nuclear
spins of the 13CO-15N-diethyl-(dimethylcarbamoyl)fluoromethyl-phosphonate molecule (whose coupling topology is illustrated as an inset) by an INEPT-like
procedure, where dkl = 1/(4Jkl) and Jkl is the scalar coupling between spins k and l. Light-gray rectangles denote continuous-wave pulses, used to decouple
the 15N nucleus. The dark grey bar denotes a variable pulse, applied to set the desired correlation triple {c j(0)}. Thicker (red) and thinner (blue) bars denote π
and π/2 pulses, respectively; the phases of the striped π/2 pulses were cycled to construct each density matrix element. After the preparation stage, the system
was left to decohere in its environment; π pulses were applied in the middle of the evolution to avoid Jkl oscillations. The final π/2 pulses served to produce a
detectable NMR signal in the 1H spin channel. B: Evolution of (absolute values of) the correlation functions |c j | in the experimental states (points), along with
theoretical predictions (solid lines) based on phase damping noise with an effective relaxation time T2 ≈ 0.04 s. C: Experimental observation of time-invariant
coherence (in the plus/minus basis) in the four-qubit ensemble, measured by relative entropy (red circles) and normalised trace distance (green diamonds), along
with theoretical predictions (solid lines). In panels B–C, experimental errors due to pulse imperfections and coupling instabilities result in error bars within the
size of the data points.

environment as before, the coherence dynamics was measured
by a non-tomographic detection method similarly to what was
done in [56], reading out the correlation triple (see Fig. 3B)
from local spin observables on the 1H nucleus, whose spec-
trum exhibited the best signal-to-noise ratio [38]. The results
in Fig. 3C demonstrate, albeit with a less spectacular accu-
racy than the two-qubit case, time-invariant coherence in the
plus/minus basis in our four-qubit complex, as measured by
normalised trace distance and relative entropy of coherence;
the latter quantity also coincides with the global discord, a
measure of multipartite quantum correlations [57, 58], in gen-
eralised BD states.

In conclusion, we demonstrated experimentally in two dif-
ferent room temperature NMR setups that coherence, the
quintessential signature of quantum mechanics [3], can re-
sist decoherence under particular dynamical conditions, in
principle with no need for external control. While only cer-
tain states feature exactly time-invariant coherence in the-
ory, more general states were shown to maintain a guaran-
teed amount of coherence within the experimental timescales.
These phenomena, here observed for two- and four-qubit en-
sembles, are predicted to occur in larger systems composed by
an arbitrary (even) number of qubits [25]. It is intriguing to
wonder whether biological systems such as light-harvesting
complexes, in which quantum coherence effects persist un-
der exposure to dephasing environments [16–18], might have
evolved towards exploiting natural mechanisms for coherence
protection similar to the ideal one reported here; this is a topic
for further investigation [15].

While this Letter realises a proof-of-principle demonstra-
tion, our findings can impact on practical applications, specif-
ically on noisy quantum and nanoscale technologies. In par-

ticular, in quantum metrology [7], coherence in the plus/minus
basis is a resource for precise estimation of frequencies or
magnetic fields generated by a Hamiltonian aligned along the
spin-x direction. When decoherence with a preferred transver-
sal direction (e.g., phase damping noise) affects the estima-
tion, as in atomic magnetometry [36, 59], a quantum en-
hancement can be achieved by optimising the evolution time
[36, 60] or using error correcting techniques [61, 62]. Here
we observed instances in which coherence is basically unaf-
fected by transversal dephasing noise. This suggests that the
states prepared here (or others in which similar phenomena
occur, such as GHZ states; see also [63]) could be used as
metrological probes with sensitivity immune to decoherence.
Furthermore, it has been recently shown that the quantum ad-
vantage in discriminating phase shifts generated by local spin-
x Hamiltonians is given exactly by the ‘robustness of coher-
ence’ [13] in the plus/minus basis, a measure equal to the trace
distance of coherence for BD states: this implies that the per-
formance of such an operational task can in principle run un-
perturbed, if the probes are initialised as in our demonstration,
in presence of a natural dephasing environment. We will ex-
plore these applications experimentally in future works.
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Y.-C. Cheng, R. E. Blakenship, and G. R. Fleming, Nature 446,
782 (2007).

[17] G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram,
E. Harel, J. Z. Wen, R. E. Blankenship, and G. S. Engel, PNAS
107, 12766 (2010).

[18] A. W. Chin, R. Rosenbach, F. Caycedo-Soler, S. F. Huelga, and
M. B. Plenio, Nature Phys. 9, 113 (2013).

[19] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).
[20] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch,
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T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm, Eur.
Phys. J. D 69, 279 (2015).

[21] L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 82, 2417
(1999).
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SUPPLEMENTAL MATERIAL

Appendix A: Experimental details

1. Two Qubits System

a. NMR setup

The NMR experiments for two-qubit systems were per-
formed in a Chloroform (CHCl3) sample enriched with 13C,
prepared as a mixture of 100 mg of 99% 13C-labelled CHCl3
in 0.7 mL of 99.8% CDCl3. The 1H and 13C spin-1/2 nuclei
were associated to the first and second qubits, respectively.
This system is described by the Hamiltonian

H = ~ωH IH
z + ~ωC IC

z + 2π~JIH
z IC

z , (A1)

where Ik
z is the z component of the spin angular momentum

of each nucleus k = H,C, and ωk is their Larmour frequency.
On a Varian 500 MHz liquid-NMR spectrometer, where the
experiments were implemented, it corresponds to ωH/2π ≈
500MHz and ωC/2π ≈ 125MHz, where J represents the weak
scalar spin-spin coupling which was measured at ≈ 215 Hz.

The experiments were performed at room temperature, so
that the high temperature approximation (kBT � ~ωL) guar-
antees that the thermal equilibrium density operator related to
this Hamiltonian, ρ0 = e−H/kBT /Z, can be simplified to

ρ0 ≈
1
4

(
IA ⊗ IB + ε∆ρ

)
, (A2)

where Z =
∑

m e−Em/kBT is the associated partition func-
tion, ∆ρ = IH

z + IC
z /4 is the so-called deviation matrix, and

ε = ~ωH/kBT ∼ 10−5. The application of radiofrequency (rf)
pulses and the evolution under spin interactions allow for easy
manipulation of the thermal state ρ0 in order to produce differ-
ent states with an excellent control of angle and phase. This
procedure is described by the Hamiltonian

H = ~(ωH − ω
H
r f )I

H
z + ~(ωC − ω

C
r f )I

C
z (A3)

−~ωH
1 (IH

x cos φH + IH
y sin φH) − ~ωC

1 (IC
x cos φC + IC

y sin φC)

where ωk
r f is the frequency of the rf field for nucleus k (on

resonance: ωk
r f ≈ ωk), ωk

1 is the nutation frequency and φk

their respective phase. As only the deviation matrix ∆ρ is
affected by those unitary transformations, it is convenient to
write the resulting state as ρtotal =

[
(1 − ε)(IA ⊗ IB) + ερ

]
/4,

from which we define the logical NMR density matrix as the
state ρ ≡

[
(IA ⊗ IB) + ∆ρ

]
/4. The state preparation procedure

discussed in the main text refers to engineering ρ into any de-
sired two-qubit BD state.

b. Decoherence processes

NMR naturally provides well characterised environments,
characterised by the Phase Damping (PD) and Generalised
Amplitude Damping (GAD) channels acting on each qubit
[24]. PD is associated to loss of coherence (in the compu-
tational basis) with no energy exchange and is specified by

the following Kraus operators,

KP
0 =

√
1 −

q(t)
2
I, KP

3 =

√
q(t)
2

σ3, (A4)

where the q(t) damping function is related to the characteristic
relaxation time T2 by q(t) = (1 − e−t/T2 ).

On the other hand, the GAD channel is associated to energy
exchange between system and environment and can be written
in Kraus operator form by

KG
0 =

√
p
(

1 0
0
√

1 − u(t)

)
, KG

1 =
√

p
(

0
√

u(t)
0 0

)
,

KG
2 =

√
1 − p

( √
1 − u(t) 0

0 1

)
, KG

3 =
√

1 − p
(

0 0
√

u(t) 0

)
,

(A5)

where u(t) = 1 − e−t/T1 and p = 1/2 − α with α = ~ωL/2kBT .
As shown in Fig. 1A of the main text, during the evolution

period no refocusing pulses were applied. This implies that
the phase damping function q(t) decayed naturally according
to the characteristic relaxation time T2. We note that the ef-
fective T2 for our experiment depends not only on the ther-
mally induced fluctuations of longitudinal fields (standard so-
called T ∗2 NMR contribution) but also on static field inhomo-
geneities. This dependence makes the PD decoherence pro-
cess occur faster, guaranteeing that no GAD effects should be
effectively observed during the experiment time domain. The
characteristic relaxation times were measured as T H

1 = 7.53
s, T H

2 = 0.14 s, TC
1 = 12.46 s, TC

2 = 0.90 s, which satisfy
T1 � T2, as desired.

c. Quantum state tomography

The quantum state tomography for this two-qubit system
was performed applying the simplified procedure proposed in
Ref. [48]. In this case the full matrix reconstruction is ob-
tained after performing the local operations: II, IX, IY , XX
on each qubit. Here, I, X and Y , correspond, respectively, to
the identity operation, a π/2 rotation around the x-axis, and
a π/2 rotation around the y-axis. This set of operations pro-
vides a 16 × 16 system of equations, whose solution gives the
density matrix elements.

2. Four Qubits System

a. NMR setup

The four-qubit experiment was performed in a BRUKER
AVIII 600 MHz spectrometer equipped with a proto-
type 6-channel probe head as described in the main
text, see [32] for further details. The molecule cho-
sen to encode the 4-qubit spin system was the 13CO-15N-
diethyl-(dimethylcarbamoyl)fluoromethyl-phosphonate com-
pound, whose coupling topology is shown in Fig. 3A; a de-
tailed description of its synthesis can be found again in [32].
This molecule contains 5 NMR-active spins (1H, 19F, 13C, 31P
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and 15N). After decoupling 15N, the Hamiltonian of the re-
maining four-spin system can be written as

H = ~(ωH − ω
H
r f )I

H
z + ~(ωF − ω

F
r f )I

F
z + ~(ωC − ω

C
r f )I

C
z +

+ ~(ωP − ω
P
r f )I

P
z + 2π~JHC IH

z IC
z + 2π~JHF IH

z IF
z + (A6)

+ 2π~JHPIH
z IP

z + 2π~JFC IF
z IC

z + 2π~JFPIF
z IP

z + 2π~JPC IP
z IC

z ,

where ωk is the Larmour frequency of each spin nucleus, mea-
sured in ωH/2π ≈ 600 MHz, ωF/2π ≈ 565 MHz, ωC/2π ≈
151 MHz, ωP/2π ≈ 243 MHz. The term Jkl represents the
scalar spin-spin coupling constant between spins k and l. In
this experiment, all density operator components were gen-
erated by the 1H magnetisation using the interactions of 1H
with the other nuclei, therefore the relevant Jkl couplings were
measured, obtaining: JHF ≈ 46.45 Hz, JHP ≈ 9.64 Hz,
JHC ≈ 3.99 Hz. As 1H presented the spectrum with the best
signal-to-noise ratio, all experiments were also recorded in the
1H channel. The experimentally determined transverse relax-
ation times [32] were 6.2 s (1H), 15.4 s (13C), 4.6 s (19F) and
0.2 s (31P). The effective T2 of our observed dynamics was
estimated at 0.04 s.

The initialM3
4 (alias generalised BD) state,

ρ(0) =
1

16

(
I⊗4 + c1(0)σ⊗4

1 + c2(0)σ⊗4
2 + c3(0)σ⊗4

3

)
, (A7)

was prepared according to the pulse sequence displayed in
Fig. 3A in the main text. Specifically, to distinguish the phys-
ical qubits, we associate each σ⊗4

i term to the spin operators
IH
i IF

i IC
i IP

i . Each of these terms is independent of the others
and also interacts independently with the environment (con-
sidering the same kind of decoherence process described be-
fore for the two-qubits system), therefore each term was pre-
pared separately.

Firstly, a continuous-wave (cw) pulse was applied in 19F,
13C, and 31P to guarantee that all terms would be generated
from the 1H magnetisation. Then, a variable pulse was ap-
plied to 1H in order to produce the correct scaling, i.e. the
correlation triple (c1(0) = 1, c2(0) = 0.7, c3(0) = 0.7).
Each four-qubit term σ⊗4

i was then achieved by an INEPT-
like transfer step. After this block, a π/2 pulse was applied on
the first spin (1H) to produce the σ⊗4

z term and/or on the other
3 spins to produce σ⊗4

x /σ
⊗4
y , where the pulse phase was appro-

priately changed. To guarantee the quality of the final state, a
phase cycling was introduced in this step. It was designed to
preserve the four-qubit coherence term σ⊗4

i and eliminate the
others. This was accomplished with an 8-step phase cycling
corresponding to a 45◦ step rotation.

b. Evolution and acquisition

After the state preparation stage, the system was allowed
to interact with its natural environment and suffer decoher-
ence in the form of phase damping. During this period, the Jkl
couplings between some of our spins and 15N could interfere
so a cw decoupling pulse was applied to the latter channel.
A refocusing π pulse was applied to the other spins in order
to account for some inhomogeneity effects and avoid oscil-
lations in the measured signal, due to any other Jkl coupling

evolutions. Notice that these inter π pulse delays were much
longer (order of miliseconds) compared to the correlation time
of the thermal fluctuations (order of nanoseconds) of the inter-
nal fields responsible for the decoherence; therefore, they did
not act as a decoupling field, and the evolution of the sample
was still effectively control-free.

The final step amounted to a π/2 pulse to convert each
multiqubit element (like e.g. IH

x IF
z IC

z IP
z ), in a NMR-detectable

term on the 1H spin channel. This method is akin to what
was implemented in [56], where it was shown that a direct
detection is as good as a full state tomography to assess the
dynamics of BD states under noise preserving their BD form.

Appendix B: Theoretical details

1. Geometric quantifiers of coherence and correlations

A rigorous and general formalism to quantify the coherence
of a d-dimensional quantum state ρ with respect to a given
reference basis {|ei〉}

d
i=1 can be found in [26] within the set-

ting of quantum resource theories [39]. Natural candidates for
quantifying coherence arise from a rather intuitive geometric
approach, wherein the distance from ρ to the set of states di-
agonal in the reference basis (known as incoherent states) is
considered, provided the adopted distance satisfies the follow-
ing constraints: contractivity under completely positive trace
preserving (CPTP) maps, i.e. D(Φ(ρ),Φ(τ)) ≤ D(ρ, τ) for
any CPTP map Φ; joint convexity, i.e. D(

∑
i piρi,

∑
i piτi) ≤∑

i piD(ρi, τi) for any probability distribution {pi}; plus some
additional properties listed in [40]. In particular,

CD(ρ) ≡ inf
δ∈I

D(ρ, δ), (B1)

with I being the set of incoherent states, defines full coher-
ence monotones CD (i.e., satisfying all requirements of the re-
source theory defined in [26]) if one chooses for example the
following distance functionals: relative entropy distance [26]
DRE(ρ, τ) = S (ρ||τ), where S (ρ||τ) = Tr[ρ(log(ρ) − log(τ))] is
the quantum relative entropy; and fidelity based distance [27]

DF(ρ, τ) = 1 − F(ρ, τ), where F(ρ, τ) =

(
Tr

(√
√
ρτ
√
ρ
))2

is
the Uhlmann fidelity. It is still currently unknown whether the
trace distance DTr (ρ, τ) = Tr

( √
(ρ − τ)2

)
induces a full coher-

ence monotone (in particular, it is still unclear whether prop-
erty C2b of [26] is satisfied by such a measure), even though
it is both contractive and jointly convex. However, for BD
states the trace distance of coherence is equal to the l1 norm
of coherence (note that we adopt a normalised definition for
the trace distance equal to twice the conventional one [24]),
which is a full coherence monotone [25, 26].

Analogously, one can define faithful measures of correla-
tions such as total correlations, discord-type quantum correla-
tions and entanglement in the following way.

For total correlations,

TD(ρ) ≡ inf
π∈P

D(ρ, π), (B2)

where π = ρA ⊗ τB, with ρA (τB) being an arbitrary state of
subsystem A (B), form the set of product states P.
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For quantum correlations [28],

QD(ρ) ≡ inf
χ∈C

D(ρ, χ), (B3)

where χ =
∑

i j pi j|iA〉〈iA| ⊗ | jB〉〈 jB|, with {pi j} being a joint
probability distribution and {|iA〉} ({| jB〉}) an orthonormal basis
of subsystem A (B), form the set of classical states C.

For entanglement [40],

ED(ρ) ≡ inf
σ∈S

D(ρ, σ), (B4)

where σ =
∑

i piρ
A
i ⊗ τ

B
i , with {pi} being a probability distri-

bution and ρA
i (τB

i ) arbitrary states of subsystem A (B), form
the set of separable states S.

Finally, within this unifying distance-based approach, yet in
a quite different way, it is also possible to identify the classical
correlations of a state ρ as follows:

PD(ρ) = inf
{χρ:QD(ρ)=D(ρ,χρ)}

inf
π∈P

D(χρ, π), (B5)

where the first infimum is taken with respect to the subset of
C formed by all the classical states χρ which solve the opti-
misation in Eq. (B3) (i.e., all the classical states which are the
closest to ρ according to D), and the second infimum corre-
sponds to the distance between each such χρ and the set of
product states P [41–43].

2. Conditions for time-invariant coherence

a. Two qubits

We now outline the general conditions such that constant
coherence can be observed for all time [25], constant quan-
tum correlations can be observed up to a switch time t? [52],
and constant classical correlations can be observed after the
switch time t?, when considering two-qubit BD states under-
going local nondissipative decoherence.

Consider two qubits A and B initially in a BD state:

ρ(0) =
1
4

IA ⊗ IB +

3∑
α=1

cα(0)σA
α ⊗ σ

B
α

 (B6)

and such that the following special initial condition is satis-
fied,

ci(0) = −c j(0)ck(0), (B7)

where I is the 2 × 2 identity, σα is the α-th Pauli matrix and
{i, j, k} is a fixed chosen permutation of {1, 2, 3}. Let the two
(noninteracting) qubits undergo local Markovian flip-type de-
coherence channels towards the k-th spin direction (i.e. bit-flip
noise for k = 1, bit-phase-flip noise for k = 2, and phase-flip
noise for k = 3). Their evolved global state at any time t is
then represented by

ρ(t) =

3∑
α,β=0

Kα ⊗ Kβρ(0)K†α ⊗ K†β , (B8)

where

K0 =

√
1 −

q(t)
2
I, Ki = 0, K j = 0, Kk =

√
q(t)
2
σk, (B9)

q(t) = 1 − e−γt is the strength of the noise, γ is the decoher-
ence rate, and {i, j, k} is the permutation of {1, 2, 3} fixed in the
initial condition, Eq. (B7). One can easily see that the evolved
state is still a BD state, whose corresponding correlation func-
tion triple is given by

ci(t) = ci(0)e−2γt, c j(t) = c j(0)e−2γt, ck(t) = ck(0). (B10)

Focusing first on coherence, in [25] it was shown that, ac-
cording to any contractive and jointly convex distance, one
of the closest incoherent states δ(α)

ρ(t) to the evolved BD state
ρ(t), with respect to the basis consisting of tensor products
of eigenstates of σα, is just the Euclidean projection of ρ(t)
onto the cα-axis, i.e. it is still a BD state and its triple is
given by {δαβcα(t)}3β=1, for any α , i. Moreover, in [42] it was
shown that any contractive distance between the evolved BD
state ρ(t) and its Euclidean projection onto the c j-axis must
be constant for any t. It immediately follows that any valid
distance-based measure of coherence C( j)

D (ρ(t)) of the evolved
state, with respect to the product basis consisting of tensor
products of eigenstates of σ j, is invariant for any time t.

For quantum correlations, according to any contractive and
jointly convex distance, one of the closest classical states χρ(t)
to the evolved BD state ρ(t) is just the Euclidean projection of
ρ(t) onto the closest c-axis, with triple given by {δαβcα(t)}3β=1

and α set by |cα(t)| = max{|cβ(t)|}3β=1 [52]. When |c j(0)| >

|ck(0)| then α = j until the switch time t? = 1
2γ ln

∣∣∣∣ c j(0)
ck(0)

∣∣∣∣, with
α = k afterwards. Combined with the result in [42] that any
contractive distance between the evolved BD state ρ(t) and its
Euclidean projection onto the c j-axis must be constant for any
t, this immediately implies time-invariance of quantum cor-
relations up until the switch time t?. No general proof has
yet been found for the subsequent time-invariance of classical
correlations after the switch time t? for any contractive and
jointly convex distance, but this has been observed in partic-
ular cases (based e.g. on relative entropy, trace and fidelity
based distances) [34, 42, 44]. The time-invariance of classi-
cal correlations is related to the finite-time emergence of the
pointer basis during the dynamics [45, 47].

We note that in our two-qubit experiment we have imple-
mented exactly an instance of the above conditions, specifi-
cally in the case i = 2, j = 1 and k = 3; the corresponding
phase-flip noise reduces precisely to the PD channel occurring
in NMR, as it can be seen by comparing the Kraus operators in
Eqs. (A4) and (B8). The decoherence rate in our demonstra-
tion was given by γ =

T H
2 +TC

2
2T H

2 TC
2

. With this evolution, the switch

time is obtained as t? = 1
2γ ln

∣∣∣∣ c1(0)
c3(0)

∣∣∣∣. For an initial BD state
with c1(0) = 1, c2(0) = 0.7 , c3(0) = −0.7 as we prepared, re-
specting the constraint in Eq. (B7), the expected switch time
was t? ≈ 0.043 s, which was found in excellent agreement
with the experimental data. Time-invariant coherence in the
plus/minus basis (i.e. the eigenbasis of σ1) was observed ac-
cording to any known valid geometric measure CD (Fig. 1 of
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the main text). Entanglement and total correlations instead de-
cay monotonically without experiencing any interval of time-
invariance in the considered dynamical conditions.

b. Even N qubits

BD states are particular instances of a more general class
of N-qubit states, that we may call generalised BD states or
M3

N states [25], having all maximally mixed marginals and
characterised only by the three correlations functions cα =

〈σ⊗N
α 〉, with j = 1, 2, 3. For any even N ≥ 2, consider N

qubits initially in anM3
N state,

ρ(0) =
1

2N

I⊗N +

3∑
α=1

cα(0)σ⊗N
α

 , (B11)

and such that the following initial condition is satisfied,

ci(0) = (−1)N/2c j(0)ck(0), (B12)

where {i, j, k} is a fixed chosen permutation of {1, 2, 3}. Let
the N (noninteracting) qubits undergo local Markovian flip-
type decoherence channels towards the k-th spin direction as
before (notice that such a dynamics is strictly incoherent [26,
37] with respect to any product basis {|m〉}⊗N , with {|m〉} being
the eigenbasis of any of the three canonical Pauli operators σm
on each qubit). The evolved global state of the N qubits at any
time t is then represented by

ρ(t) =

3∑
α1,...,αN =0

(
Kα1 (t)⊗ . . .⊗KαN (t)

)
ρ(0)

(
Kα1 (t)⊗ . . .⊗KαN (t)

)†
.

(B13)
Once again, the evolved state is still a M3

N state, whose cor-
responding correlation function triple is given by Eq. (B10).
Then, for any even N ≥ 2, any valid distance-based measure
of coherence C( j)

D (ρ(t)) of the evolved state, with respect to the
product basis consisting of tensor products of eigenstates of
σ j, is invariant for any time t [25].

We note that in our four-qubit experiment (N = 4) we have
implemented precisely an instance of the above conditions,
specifically in the case i = 2, j = 1 and k = 3, and for an
initially prepared M3

4 state with c1(0) = 1, c2(0) = 0.7, and
c3(0) = 0.7, respecting the constraint in Eq. (B12). Time-
invariant coherence in the plus/minus basis (i.e. the eigenbasis
of σ1) was observed according to various geometric measures
CD (Fig. 3 of the main text).

3. Coherence lower bound from generalised BD states

We now prove that the coherence of an arbitrary N-qubit
state ρ, with correlation functions c j = 〈σ⊗N

j 〉, is lower
bounded by the coherence of theM3

N state defined by the same
correlation functions. This holds regardless of the number of
qubits N and when considering the basis consisting of tensor
products of eigenstates of σ j, for any j = 1, 2, 3 (e.g. the
plus/minus basis when j = 1, as demonstrated experimentally
in Fig. 2 of the main text for N = 2). Such a proof relies on
the following two results.

First, as shown in [46], any N-qubit state ρ can be trans-
formed into anM3

N state with the same correlation functions
c j = 〈σ⊗N

j 〉 through the map Θ defined as follows:

Θ(ρ) =
1

22(N−1)

∑22(N−1)

j=1
U′j%U′†j (B14)

where U′j are the following single-qubit local unitaries

{U′j}
22(N−1)

j=1 =
{
I⊗N , {U j1 }

2(N−1)
j1=1 , {U j2 U j1 }

2(N−1)
j2> j1=1, · · · (B15)

· · · {U j2(N−1) . . .U j2 U j1 }
2(N−1)
j2(N−1)>...> j2> j1=1

}
,

with

{U j}
2(N−1)
j=1 =

{
(σ1 ⊗ σ1 ⊗ I⊗N−2), (I ⊗ σ1 ⊗ σ1 ⊗ I⊗N−3), . . . ,

(I⊗N−3 ⊗ σ1 ⊗ σ1 ⊗ I), (I⊗N−2 ⊗ σ1 ⊗ σ1),
(σ2 ⊗ σ2 ⊗ I⊗N−2), (I ⊗ σ2 ⊗ σ2 ⊗ I⊗N−3), . . . ,

(I⊗N−3 ⊗ σ2 ⊗ σ2 ⊗ I), (I⊗N−2 ⊗ σ2 ⊗ σ2)
}
.

(B16)

Second, as shown below, the map Θ is an incoherent oper-
ation with respect to the basis consisting of tensor products of
eigenstates of σ j, for any j = 1, 2, 3. An incoherent operation
is a CPTP map that cannot create coherence, i.e. with Kraus
operators {Ki} satisfying KiIK†i ⊂ I for all i, with I the set
of incoherent states with respect to the chosen reference basis.
Since any coherence monotone must be non-increasing under
incoherent operations [26], it follows that the coherence of
Θ(ρ) is less than or equal to the corresponding coherence of ρ.

In what follows we will prove that Θ is an incoherent
operation with respect to the basis consisting of tensor
products of eigenstates of σ1 (i.e. the plus/minus basis),
although analogous proofs hold when considering the other
two Pauli operators. Since the Kraus operators of the map Θ

are given by K j = 1
2N−1 U′j, in order for Θ to be an incoherent

operation in the plus/minus basis we need that U′jδU
′†

j ∈ I for
any δ ∈ I and any j ∈ {1, · · · , 22(N−1)}, where I is the set of
states diagonal in this basis. This obviously holds for j = 1,
being U′1 the identity. On the other hand, as it can be seen
from Eq. (B15), all the other single-qubit unitaries U′j are just
products of the single-qubit unitaries U j listed in Eq. (B16),
so that we just need to prove that U jδU

†

j ∈ I for any δ ∈ I
and for any j ∈ {1, · · · , 2(N − 1)}. For any j ∈ {1, · · · ,N − 1},
U j just leaves any state which is diagonal in the plus/minus
basis invariant, it being a tensor product between two σ1’s
acting on two neighbouring qubits and the identity acting on
the remaining ones. Otherwise, for any j ∈ {N, · · · , 2(N − 1)},
U j is the tensor product between two σ2’s acting on two
neighbouring qubits and the identity on the rest of the qubits.
Consequently, by using σ2|±〉〈±|σ2 = |∓〉〈∓| and the fact that
the general form of a state δ diagonal in the plus/minus basis
is δ =

∑
j1, j2,··· , jN =± p j1, j2,··· , jN | j1, j2, · · · , jN〉〈 j1, j2, · · · , jN |,

we have that, when e.g. j = N, then UNδU
†

N =∑
j1, j2,···, jN =± p j1, j2,···, jN UN | j1, j2, · · ·, jN〉〈 j1, j2, · · ·, jN |U

†

N =∑
j1, j2,···, jN =± p j1, j2,···, jN |π( j1), π( j2), · · ·, jN〉〈π( j1), π( j2), · · ·, jN |,

where π(±) ≡ ∓, so that UNδU
†

N ∈ I. Analogously, one can
see that all the remaining single-qubit local unitaries U j are
such that U jδU j ∈ I, thus completing the proof.
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