101 research outputs found

    Binary systems and their nuclear explosions

    Get PDF
    Peer ReviewedPreprin

    Production of dust by massive stars at high redshift

    Full text link
    The large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift pose a challenge to galaxy formation models and theories of cosmic dust formation. At z > 6 only stars of relatively high mass (> 3 Msun) are sufficiently short-lived to be potential stellar sources of dust. This review is devoted to identifying and quantifying the most important stellar channels of rapid dust formation. We ascertain the dust production efficiency of stars in the mass range 3-40 Msun using both observed and theoretical dust yields of evolved massive stars and supernovae (SNe) and provide analytical expressions for the dust production efficiencies in various scenarios. We also address the strong sensitivity of the total dust productivity to the initial mass function. From simple considerations, we find that, in the early Universe, high-mass (> 3 Msun) asymptotic giant branch stars can only be dominant dust producers if SNe generate <~ 3 x 10^-3 Msun of dust whereas SNe prevail if they are more efficient. We address the challenges in inferring dust masses and star-formation rates from observations of high-redshift galaxies. We conclude that significant SN dust production at high redshift is likely required to reproduce current dust mass estimates, possibly coupled with rapid dust grain growth in the interstellar medium.Comment: 72 pages, 9 figures, 5 tables; to be published in The Astronomy and Astrophysics Revie

    From the Sum of Near-Zero Energy Buildings to the Whole of a Near-Zero Energy Housing Settlement: The Role of Communal Spaces in Performance-Driven Design

    Get PDF
    Almost a century ago Modernism challenged the structure of the city and reshaped its physical space in order to, amongst other things, accommodate new transportation infrastructure and road networks proclaiming the,nowadays much-debated ‘scientificated’ pursuit of efficiency for the city. This transformation has had a great impact on the way humans still design, move in, occupy and experience the city. Today major cities in Europe, such as Paris and London, are considering banning vehicles from their historic centers. In parallel, significant effort is currently underway internationally by designers, architects, and engineers to integrate innovative technologies and sophisticated solutions for energy production, management, and storage, as well as for efficient energy consumption, into the architecture of buildings. In general, this effort seeks for new technologies and design methods (e.g., DesignBuilder with EnergyPlus simulation engine; Rhicoceros3D with Grasshopper plugin and Ecotect, Radiance and EnergyPlus tools) that would enable a holistic approach to the spatial design of Near-Zero Energy buildings, so that their ecological benefits are an added value to the architectural design and a building’s visual, and material, impact on its surrounding space. The paper inquires how the integration of such technological infrastructure and performance-orientated interfaces changes yet again the structure and form of cities, and to what extent it safeguards social rights and enables equal access to common resources. Drawing from preliminary results and initial considerations of ongoing research that involve the construction of four innovative NZE settlements across Europe, in the context of the EU-funded ZERO-PLUS project, this paper discusses the integration of novel infrastructure in communal spaces of these settlements. In doing so, it contributes to the debate about smart communities and their role in the sustainable management of housing developments and settlements that are designed and developed with the concept of smart territories

    Search for pair production of excited top quarks in the lepton+jets final state

    Get PDF

    Measurement of charged particle spectra in minimum-bias events from proton-proton collisions at root s =13 TeV

    Get PDF
    Pseudorapidity, transverse momentum, and multiplicity distributions are measured in the pseudorapidity range vertical bar eta vertical bar 0.5 GeV in proton-proton collisions at a center-of-mass energy of root s = 13 TeV. Measurements are presented in three different event categories. The most inclusive of the categories corresponds to an inelastic pp data set, while the other two categories are exclusive subsets of the inelastic sample that are either enhanced or depleted in single diffractive dissociation events. The measurements are compared to predictions from Monte Carlo event generators used to describe high-energy hadronic interactions in collider and cosmic-ray physics.Peer reviewe

    From the Sum of Near-Zero Energy Buildings to the Whole of a Near-Zero Energy Housing Settlement: The Role of Communal Spaces in Performance-Driven Design

    No full text
    corecore