13 research outputs found

    Ligand-induced conformational changes in a SMALP-encapsulated GPCR.

    Get PDF
    The adenosine 2A receptor (A2AR), a G-protein-coupled receptor (GPCR), was solubilised and purified encapsulated in styrene maleic acid lipid particles (SMALPs). The purified A2AR-SMALP was associated with phospholipids characteristic of the plasma membrane of Pichia pastoris, the host used for its expression, confirming that the A2AR-SMALP encapsulated native lipids. The fluorescence spectrum of the A2AR-SMALP showed a characteristic broad emission peak at 330 nm, produced by endogenous Trp residues. The inverse agonist ZM241385 caused 30% increase in fluorescence emission, unusually accompanied by a red-shift in the emission wavelength. The emission spectrum also showed sub-peaks at 321 nm, 335 nm and 350 nm, indicating that individual Trp inhabited different environments following ZM241385 addition. There was no effect of the agonist NECA on the A2AR-SMALP fluorescence spectrum. Substitution of two Trp residues by Tyr suggested that ZM241385 affected the environment and mobility of Trp2466.48 in TM6 and Trp2687.33 at the extracellular face of TM7, causing transition to a more hydrophobic environment. The fluorescent moiety IAEDANS was site-specifically introduced at the intracellular end of TM6 (residue 2316.33) to report on the dynamic cytoplasmic face of the A2AR. The inverse agonist ZM241385 caused a concentration-dependent increase in fluorescence emission as the IAEDANS moved to a more hydrophobic environment, consistent with closing the G-protein binding crevice. NECA generated only 30% of the effect of ZM241385. This study provides insight into the SMALP environment; encapsulation supported constitutive activity of the A2AR and ZM241385-induced conformational transitions but the agonist NECA generated only small effects

    Polymerase chain reaction on a viral nanoparticle

    Get PDF
    The field of synthetic biology includes studies that aim to develop new materials and devices from biomolecules. In recent years much work has been carried out using a range of biomolecular chassis including α-helical coiled coils, α-sheet amyloids and even viral particles. In this work we show how hybrid bionanoparticles can be produced from a viral M13 bacteriophage scaffold through conjugation to DNA primers that can template a polymerase chain reaction (PCR). This unprecedented example of a PCR on a virus particle has been studied by flow aligned linear dichroism spectroscopy, which gives information on the structure of the product as well as a new protototype methodology for DNA detection. We propose that this demonstration of PCR on the surface of a bionanoparticle is a useful addition to ways in which hybrid assemblies may be constructed using synthetic biology

    Direct detection and measurement of wall shear stress using a filamentous bio-nanoparticle

    Get PDF
    The wall shear stress (WSS) that a moving fluid exerts on a surface affects many processes including those relating to vascular function. WSS plays an important role in normal physiology (e.g. angiogenesis) and affects the microvasculature's primary function of molecular transport. Points of fluctuating WSS show abnormalities in a number of diseases; however, there is no established technique for measuring WSS directly in physiological systems. All current methods rely on estimates obtained from measured velocity gradients in bulk flow data. In this work, we report a nanosensor that can directly measure WSS in microfluidic chambers with sub-micron spatial resolution by using a specific type of virus, the bacteriophage M13, which has been fluorescently labeled and anchored to a surface. It is demonstrated that the nanosensor can be calibrated and adapted for biological tissue, revealing WSS in micro-domains of cells that cannot be calculated accurately from bulk flow measurements. This method lends itself to a platform applicable to many applications in biology and microfluidics

    A plug-and-play aptamer diagnostic platform based on linear dichroism spectroscopy

    Get PDF
    A plug-and-play sandwich assay platform for the aptamer-based detection of molecular targets using linear dichroism (LD) spectroscopy as a read-out method has been demonstrated. A 21-mer DNA strand comprising the plug-and-play linker was bioconjugated onto the backbone of the filamentous bacteriophage M13, which gives a strong LD signal due to its ready alignment in linear flow. Extended DNA strands containing aptamer sequences that bind the protein thrombin, TBA and HD22, were then bound to the plug-and-play linker strand via complementary base pairing to generate aptamer-functionalised M13 bacteriophages. The secondary structure of the extended aptameric sequences required to bind to thrombin was checked using circular dichroism spectroscopy, with the binding confirmed using fluorescence anisotropy measurements. LD studies revealed that this sandwich sensor design is very effective at detecting thrombin down to pM levels, indicating the potential of this plug-and-play assay system as a new label-free homogenous detection system based on aptamer recognition

    Tundra Trait Team : A database of plant traits spanning the tundra biome

    Get PDF
    Motivation The Tundra Trait Team (TTT) database includes field-based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade-offs, trait-environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained Spatial location and grain The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (> 1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub-Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain Major taxa and level of measurement All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.Peer reviewe

    Construction and validation of a perceived physical literacy instrument for physical education teachers

    No full text
    [[abstract]]The purpose of this study was to construct and validate a “Perceived Physical Literacy Instrument” (PPLI) for physical education teachers. Based on literature review and focus group interviews, an 18-item instrument was developed for the initial tests. This self-report measure, using a 5-point Likert scale, formed the PPLI and was administered to 336 physical education teachers in Hong Kong. The sample was randomly split, and exploratory and confirmatory factor analyses resulted in a 9-item, 3-factor scale. Exploratory factor analysis (EFA) item loadings ranged from 0.69 to 0.87, and Cronbach’s alpha ranged from 0.73 to 0.76. Confirmatory factor analysis (CFA) showed that the construct demonstrated good fit to the model. The PPLI thus appeared to be reliable and valid to measure the perceived physical literacy of physical education teachers. It is argued that the instrument can be used for both research and applied purposes and potential uses for the instrument in physical education, medical and health settings are discussed.[[notice]]補正完

    Tundra Trait Team:a database of plant traits spanning the tundra biome

    No full text
    Abstract Motivation: The Tundra Trait Team (TTT) database includes field‐based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade‐offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (> 1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub‐Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release
    corecore