28 research outputs found
Finding the sources of missing heritability in a yeast cross
For many traits, including susceptibility to common diseases in humans,
causal loci uncovered by genetic mapping studies explain only a minority of the
heritable contribution to trait variation. Multiple explanations for this
"missing heritability" have been proposed. Here we use a large cross between
two yeast strains to accurately estimate different sources of heritable
variation for 46 quantitative traits and to detect underlying loci with high
statistical power. We find that the detected loci explain nearly the entire
additive contribution to heritable variation for the traits studied. We also
show that the contribution to heritability of gene-gene interactions varies
among traits, from near zero to 50%. Detected two-locus interactions explain
only a minority of this contribution. These results substantially advance our
understanding of the missing heritability problem and have important
implications for future studies of complex and quantitative traits
Plants as river system engineers
I would like to acknowledge three research grants/contracts that are supporting my current research on this theme: Grant F/07 040/AP from the Leverhulme Trust; Grant NE/F014597/1 from the Natural Environment Research Council, UK, and the REFORM collaborative project funded by the European Union Seventh Framework Programme under grant agreement 282656
Modeling the interactions between river morphodynamics and riparian vegetation
The study of river-riparian vegetation interactions is an important and intriguing research field in geophysics. Vegetation is an active element of the ecological dynamics of a floodplain which interacts with the fluvial processes and affects the flow field, sediment transport, and the morphology of the river. In turn, the river provides water, sediments, nutrients, and seeds to the nearby riparian vegetation, depending on the hydrological, hydraulic, and geomorphological characteristic of the stream. In the past, the study of this complex theme was approached in two different ways. On the one hand, the subject was faced from a mainly qualitative point of view by ecologists and biogeographers. Riparian vegetation dynamics and its spatial patterns have been described and demonstrated in detail, and the key role of several fluvial processes has been shown, but no mathematical models have been proposed. On the other hand, the quantitative approach to fluvial processes, which is typical of engineers, has led to the development of several morphodynamic models. However, the biological aspect has usually been neglected, and vegetation has only been considered as a static element. In recent years, different scientific communities (ranging from ecologists to biogeographers and from geomorphologists to hydrologists and fluvial engineers) have begun to collaborate and have proposed both semiquantitative and quantitative models of river-vegetation interconnections. These models demonstrate the importance of linking fluvial morphodynamics and riparian vegetation dynamics to understand the key processes that regulate a riparian environment in order to foresee the impact of anthropogenic actions and to carefully manage and rehabilitate riparian areas. In the first part of this work, we review the main interactions between rivers and riparian vegetation, and their possible modeling. In the second part, we discuss the semiquantitative and quantitative models which have been proposed to date, considering both multi- and single-thread river
Optimization of Helium Inflating on Heat Dissipation and Luminescence Properties of the A60 LED Filament Lamps
LED filament lamp has the characteristics of nearly 360° lighting angle, high brightness, and low energy consumption, turning it gradually into the best substitute for traditional incandescent lamps. At present, due to the limitations of heat dissipation, the development of high-power LED filament lamp is restricted. Helium is a rare gas with small density and high heat transfer coefficient. It can be used as a cooling and protective gas for LED filament lamp. In this paper, we investigated the effects of helium on the heat dissipation and luminescence performance of the A60 LED filament lamps by detecting the changes of junction temperature, color temperature, and luminous flux of different ratios helium inflating in the different power A60 LED filament lamps. Through the experiment, we found the most cost-effective ratio of helium gas in the A60 LED filament lamps without improving the lamp size and the filament diameter
Earth observation brain (EOB): an intelligent earth observation system
Since the twenty-first century, with the rapid development of high-resolution earth observation satellites, the earth observation satellite system has developed from the initial single satellite observation model to the current satellite constellation formed by light and small satellites observation model. All-weather and all-directional fine earth observation can now be realized. In the future, the satellite constellation, communication satellites, navigation satellites, and aircrafts are linked through dynamic linking network to form an air-space information network to realize real-time services of intelligent air-space information. To further enhance the perception, cognition, and quick response ability of the network, we propose the concept and model of the Earth Observation Brain (EOB) â the intelligent earth system based on events perception in this paper. Then, some key technologies needed to be solved in the EOB are also described. An application example is illustrated to show the process of perception and cognition in the primary stage of the EOB. In the future, EOB can observe what change of what object, the when and where to push these right information to mobile terminal of right people at the right time and right place. Global users can obtain any data, information, and knowledge in real-time through the EOB
Cannabisin B induces autophagic cell death by inhibiting the AKT/mTOR pathway and S phase cell cycle arrest in HepG2 cells
This study investigates the anticancer properties of cannabisin B, purified from hempseed hull, in HepG2 human hepatoblastoma cells. The results indicate that cannabisin B significantly inhibited cell proliferation by inducing autophagic cell death rather than typical apoptosis. Cell viability transiently increased upon the addition of a low concentration of cannabisin B but decreased upon the addition of high concentrations. Cannabisin B-induced changes in cell viability were completely inhibited by pre-treatment with 3-methyladenine (3-MA), indicating that the induction of autophagy by cannabisin B caused cell death. Additionally, cannabisin B induced S phase cell cycle arrest in a dose-dependent manner. Moreover, cannabisin B was found to inhibit survival signaling by blocking the activation of AKT and down-stream targets of the mammalian target of rapamycin (mTOR). These findings suggest that cannabisin B possesses considerable antiproliferative activity and that it may be utilised as a promising chemopreventive agent against hepatoblastoma disease. (C) 2012 Elsevier Ltd. All rights reserved