462 research outputs found

    Triple-q octupolar ordering in NpO_2

    Full text link
    We report the results of resonant X-ray scattering experiments performed at the Np M_4,5 edges in NpO_2. Below T_0 = 25 K, the development of long-range order of Np electric quadrupoles is revealed by the growth of superlattice Bragg peaks. The electronic transition is not accompanied by any measurable crystallographic distortion, either internal or external, so the symmetry of the system remains cubic. The polarization and azimuthal dependence of the intensity of the resonant peaks is well reproduced assuming Templeton scattering from a triple-q longitudinal antiferroquadrupolar structure. Electric quadrupole order in NpO_2 could be driven by the ordering at T_0 of magnetic octupoles of Gamma_5 symmetry, splitting the Np ground state quartet and leading to a singlet ground state with zero dipole magnetic moment.Comment: 4 Pages, 3 Figures, submitted to Phys. Rev. Lett. v2: resubmitted after referee report

    Pilot Testing Behavior Therapy for Chronic Tic Disorders in Neurology and Developmental Pediatrics Clinics

    Get PDF
    Comprehensive Behavioral Intervention for Tics (CBIT) is an efficacious treatment with limited regional availability. As neurology and pediatric clinics are often the first point of therapeutic contact for individuals with tics, the present study assessed preliminary treatment response, acceptability, and feasibility of an abbreviated version, modified for child neurology and developmental pediatrics clinics. Fourteen youth (9-17) with Tourette disorder across 2 child neurology clinics and one developmental pediatrics clinic participated in a small case series. Clinician-rated tic severity (Yale Global Tic Severity Scale) decreased from pre- to posttreatment, z = –2.0, P \u3c .05, r = –.48, as did tic-related impairment, z = –2.4, P \u3c .05, r = –.57. Five of the 9 completers (56%) were classified as treatment responders. Satisfaction ratings were high, and therapeutic alliance ratings were moderately high. Results provide guidance for refinement of this modified CBIT protocol

    Magnetic properties of the spin-1 chain compound NiCl3_3C6_6H5_5CH2_2CH2_2NH3_3

    Get PDF
    We report experimental results of the static magnetization, ESR and NMR spectroscopic measurements of the Ni-hybrid compound NiCl3_3C6_6H5_5CH2_2CH2_2NH3_3. In this material NiCl3_3 octahedra are structurally arranged in chains along the crystallographic aa-axis. According to the static susceptibility and ESR data Ni2+^{2+} spins S=1S = 1 are isotropic and are coupled antiferromagnetically (AFM) along the chain with the exchange constant J=25.5J = 25.5 K. These are important prerequisites for the realization of the so-called Haldane spin-1 chain with the spin-singlet ground state and a quantum spin gap. However, experimental results evidence AFM order at TN10T_{\rm N} \approx 10 K presumably due to small interchain couplings. Interestingly, frequency-, magnetic field-, and temperature-dependent ESR measurements, as well as the NMR data, reveal signatures which could presumably indicate an inhomogeneous ground state of co-existent mesoscopically spatially separated AFM ordered and spin-singlet state regions similar to the situation observed before in some spin-diluted Haldane magnets

    On the Lagrangian Dynamics of Atmospheric Zonal Jets and the Permeability of the Stratospheric Polar Vortex

    Get PDF
    The Lagrangian dynamics of zonal jets in the atmosphere are considered, with particular attention paid to explaining why, under commonly encountered conditions, zonal jets serve as barriers to meridional transport. The velocity field is assumed to be two-dimensional and incompressible, and composed of a steady zonal flow with an isolated maximum (a zonal jet) on which two or more travelling Rossby waves are superimposed. The associated Lagrangian motion is studied with the aid of KAM (Kolmogorov--Arnold--Moser) theory, including nontrivial extensions of well-known results. These extensions include applicability of the theory when the usual statements of nondegeneracy are violated, and applicability of the theory to multiply periodic systems, including the absence of Arnold diffusion in such systems. These results, together with numerical simulations based on a model system, provide an explanation of the mechanism by which zonal jets serve as barriers to meridional transport of passive tracers under commonly encountered conditions. Causes for the breakdown of such a barrier are discussed. It is argued that a barrier of this type accounts for the sharp boundary of the Antarctic ozone hole at the perimeter of the stratospheric polar vortex in the austral spring.Comment: Submitted to Journal of the Atmospheric Science

    助成研究報告

    Get PDF
    textabstractIncreasing amounts of data support a role for guanine quadruplex (G4) DNA and RNA structures in various cellular processes. We stained different organisms with monoclonal antibody 1H6 specific for G4 DNA. Strikingly, immuno-electron microscopy showed exquisite specificity for heterochromatin. Polytene chromosomes from Drosophila salivary glands showed bands that co-localized with heterochromatin proteins HP1 and the SNF2 domain-containing protein SUUR. Staining was retained in SUUR knock-out mutants but lost upon overexpression of SUUR. Somatic cells in Macrostomum lignano were strongly labeled, but pluripotent stem cells labeled weakly. Similarly, germline stem cells in Drosophila ovaries were weakly labeled compared to most other cells. The unexpected presence of G4 structures in heterochromatin and the difference in G4 staining between somatic cells and stem cells with germline DNA in ciliates, flatworms, flies and mammals point to a conserved role for G4 structures in nuclear organization and cellular differentiation

    Magnetic properties and revisited exchange integrals of the frustrated chain cuprate PbCuSO4_4(OH)2_2 - linarite

    Full text link
    We present a detailed study in the paramagnetic regime of the frustrated ss = 1/2 spin-compound linarite, PbCuSO4_4(OH)2_2, with competing ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor exchange interactions. Our data reveal highly anisotropic values for the saturation field along the crystallographic main directions, with \sim 7.6, \sim 10.5 and \sim 8.5\,T for the aa, bb, and cc axes, respectively. In the paramagnetic regime, this behavior is explained mainly by the anisotropy of the \textit{g}-factor but leaving room for an easy-axis exchange anisotropy. Within the isotropic J1J_1-J2J_2 spin model our experimental data are described by various theoretical approaches yielding values for the exchange interactions J1J_1 \sim -100\,K and J2J_2 \sim 36\,K. These main intrachain exchange integrals are significantly larger as compared to the values derived in two previous studies in the literature and shift the frustration ratio α=J2/J1\alpha = J_2/|J_1| \approx 0.36 of linarite closer to the 1D critical point at 0.25. Electron spin resonance (ESR) and nuclear magnetic resonance (NMR) measurements further prove that the static susceptibility is dominated by the intrinsic spin susceptibility. The Knight shift as well as the broadening of the linewidth in ESR and NMR at elevated temperatures indicate a highly frustrated system with the onset of magnetic correlations far above the magnetic ordering temperature TNT_\mathrm{N} = 2.75(5)\,K, in agreement with the calculated exchange constants.Comment: 18 pages, 18 figure

    Software for continuous game experiments

    Full text link
    ConG is software for conducting economic experiments in continuous and discrete time. It allows experimenters with limited programming experience to create a variety of strategic environments featuring rich visual feedback in continuous time and over continuous action spaces, as well as in discrete time or over discrete action spaces. Simple, easily edited input files give the experimenter considerable flexibility in specifying the strategic environment and visual feedback. Source code is modular and allows researchers with programming skills to create novel strategic environments and displays

    G-quadruplex formation at the 3′ end of telomere DNA inhibits its extension by telomerase, polymerase and unwinding by helicase

    Get PDF
    Telomere G-quadruplex is emerging as a promising anti-cancer target due to its inhibition to telomerase, an enzyme expressed in more than 85% tumors. Telomerase-mediated telomere extension and some other reactions require a free 3′ telomere end in single-stranded form. G-quadruplex formation near the 3′ end of telomere DNA can leave a 3′ single-stranded tail of various sizes. How these terminal structures affect reactions at telomere end is not clear. In this work, we studied the 3′ tail size-dependence of telomere extension by either telomerase or the alternative lengthening of telomere (ALT) mechanism as well as telomere G-quadruplex unwinding. We show that these reactions require a minimal tail of 8, 12 and 6 nt, respectively. Since we have shown that G-quadruplex tends to form at the farthest 3′ distal end of telomere DNA leaving a tail of no more than 5 nt, these results imply that G-quadruplex formation may play a role in regulating reactions at the telomere ends and, as a result, serve as effective drug target for intervening telomere function
    corecore