290 research outputs found

    Patient and Provider Communication Regarding Exercise during Pregnancy in a Rural Setting

    Get PDF
    International Journal of Exercise Science 13(3): 1228-1241, 2020. Women in rural settings are at increased risk for adverse pregnancy outcomes. One potential way to improve pregnancy outcomes in rural settings is through physical activity promotion. However, given the disparities in prenatal care, women in rural areas may not receive information from their health care provider regarding physical activity during pregnancy. Therefore, the purpose of this study was to examine patient and provider communication in a rural setting (both patients’ and providers’ perspectives) regarding physical activity during pregnancy. A mixed methods study was performed among patients and providers in an obstetrical practice in a rural setting. During early pregnancy, patients were asked questions about their current physical activity levels and intentions for physical activity during their pregnancy. During late pregnancy, patients completed a survey regarding communication from their obstetric provider about exercise during pregnancy. Providers responsible for the patients’ prenatal care were surveyed regarding communication with patients about physical activity. Seventy-one pregnant women and five providers participated. 58.2% of patients reported their provider did not discuss physical activity during pregnancy with them at all. Meanwhile, all providers (100%) reported discussing physical activity with all of their patients. Similarly, only 21.8% of patients reported their provider discussed the benefits of exercise during pregnancy, while 100% of providers reported telling their patients about the benefits of exercise during pregnancy. Our study suggests ineffective patient-provider communication regarding physical activity during pregnancy in a rural setting. Improved communication strategies could reduce disparities in health outcomes among pregnant women in rural settings

    Explaining the relationship between number line estimation and mathematical achievement: the role of visuomotor integration and visuospatial skills

    Get PDF
    Performance on number line tasks, typically used as a measure of numerical representations, are reliably related to children’s mathematical achievement. However, recent debate has questioned what precisely performance on the number line estimation task measures. Specifically, there has been a suggestion that this task may measure not only numerical representations but also proportional judgment skills; if this is the case, then individual differences in visuospatial skills, not just the precision of numerical representations, may explain the relationship between number line estimation and mathematical achievement. The current study investigated the relationships among visuospatial skills, visuomotor integration, number line estimation, and mathematical achievement. In total, 77 children were assessed using a number line estimation task, a standardized measure of mathematical achievement, and tests of visuospatial skills and visuomotor integration. The majority of measures were significantly correlated. In addition, the relationship between one metric from the number line estimation task (R2LIN) and mathematical achievement was fully explained by visuomotor integration and visuospatial skill competency. These results have important implications for understanding what the number line task measures as well as the choice of number line metric for research purposes

    Lmx1b is required for the glutamatergic fates of a subset of spinal cord neurons

    Get PDF
    Background: Alterations in neurotransmitter phenotypes of specific neurons can cause imbalances in excitation and inhibition in the central nervous system (CNS), leading to diseases. Therefore, the correct specification and maintenance of neurotransmitter phenotypes is vital. As with other neuronal properties, neurotransmitter phenotypes are often specified and maintained by particular transcription factors. However, the specific molecular mechanisms and transcription factors that regulate neurotransmitter phenotypes remain largely unknown. Methods: In this paper we use single mutant, double mutant and transgenic zebrafish embryos to elucidate the functions of Lmx1ba and Lmx1bb in the regulation of spinal cord interneuron neurotransmitter phenotypes. Results: We demonstrate that lmx1ba and lmx1bb are both expressed in zebrafish spinal cord and that lmx1bb is expressed by both V0v cells and dI5 cells. Our functional analyses demonstrate that these transcription factors are not required for neurotransmitter fate specification at early stages of development, but that in embryos with at least two lmx1ba and/or lmx1bb mutant alleles there is a reduced number of excitatory (glutamatergic) spinal interneurons at later stages of development. In contrast, there is no change in the numbers of V0v or dI5 cells. These data suggest that lmx1b-expressing spinal neurons still form normally, but at least a subset of them lose, or do not form, their normal excitatory fates. As the reduction in glutamatergic cells is only seen at later stages of development, Lmx1b is probably required either for the maintenance of glutamatergic fates or to specify glutamatergic phenotypes of a subset of later forming neurons. Using double labeling experiments, we also show that at least some of the cells that lose their normal glutamatergic phenotype are V0v cells. Finally, we also establish that Evx1 and Evx2, two transcription factors that are required for V0v cells to acquire their excitatory neurotransmitter phenotype, are also required for lmx1ba and lmx1bb expression in these cells, suggesting that Lmx1ba and Lmx1bb act downstream of Evx1 and Evx2 in V0v cells. Conclusions: Lmx1ba and Lmx1bb function at least partially redundantly in the spinal cord and three functional lmx1b alleles are required in zebrafish for correct numbers of excitatory spinal interneurons at later developmental stages. Taken together, our data significantly enhance our understanding of how spinal cord neurotransmitter fates are regulated

    Development of the Low Frequency Telescope Focal Plane Detector Modules for LiteBIRD

    Full text link
    LiteBIRD is a JAXA-led strategic large-class satellite mission designed to measure the polarization of the cosmic microwave background and Galactic foregrounds from 34 to 448 GHz across the entire sky from L2 in the late 2020s. The scientific payload includes three telescopes which are called the low-, mid-, and high-frequency telescopes each with their own receiver that covers a portion of the mission's frequency range. The low frequency telescope will map synchrotron radiation from the Galactic foreground and the cosmic microwave background. We discuss the design, fabrication, and characterization of the low-frequency focal plane modules for low-frequency telescope, which has a total bandwidth ranging from 34 to 161 GHz. There will be a total of 4 different pixel types with 8 overlapping bands to cover the full frequency range. These modules are housed in a single low-frequency focal plane unit which provides thermal isolation, mechanical support, and radiative baffling for the detectors. The module design implements multi-chroic lenslet-coupled sinuous antenna arrays coupled to transition edge sensor bolometers read out with frequency-domain mulitplexing. While this technology has strong heritage in ground-based cosmic microwave background experiments, the broad frequency coverage, low optical loading conditions, and the high cosmic ray background of the space environment require further development of this technology to be suitable for LiteBIRD. In these proceedings, we discuss the optical and bolometeric characterization of a triplexing prototype pixel with bands centered on 78, 100, and 140 GHz.Comment: SPIE Astronomical Telescope + Instrumentation (AS22

    c-Type Cytochrome-Dependent Formation of U(IV) Nanoparticles by Shewanella oneidensis

    Get PDF
    Modern approaches for bioremediation of radionuclide contaminated environments are based on the ability of microorganisms to effectively catalyze changes in the oxidation states of metals that in turn influence their solubility. Although microbial metal reduction has been identified as an effective means for immobilizing highly-soluble uranium(VI) complexes in situ, the biomolecular mechanisms of U(VI) reduction are not well understood. Here, we show that c-type cytochromes of a dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, are essential for the reduction of U(VI) and formation of extracelluar UO (2) nanoparticles. In particular, the outer membrane (OM) decaheme cytochrome MtrC (metal reduction), previously implicated in Mn(IV) and Fe(III) reduction, directly transferred electrons to U(VI). Additionally, deletions of mtrC and/or omcA significantly affected the in vivo U(VI) reduction rate relative to wild-type MR-1. Similar to the wild-type, the mutants accumulated UO (2) nanoparticles extracellularly to high densities in association with an extracellular polymeric substance (EPS). In wild-type cells, this UO (2)-EPS matrix exhibited glycocalyx-like properties and contained multiple elements of the OM, polysaccharide, and heme-containing proteins. Using a novel combination of methods including synchrotron-based X-ray fluorescence microscopy and high-resolution immune-electron microscopy, we demonstrate a close association of the extracellular UO (2) nanoparticles with MtrC and OmcA (outer membrane cytochrome). This is the first study to our knowledge to directly localize the OM-associated cytochromes with EPS, which contains biogenic UO (2) nanoparticles. In the environment, such association of UO (2) nanoparticles with biopolymers may exert a strong influence on subsequent behavior including susceptibility to oxidation by O (2) or transport in soils and sediments

    "I don't eat a hamburger and large chips every day!" A qualitative study of the impact of public health messages about obesity on obese adults

    Get PDF
    BackgroundWe are a society that is fixated on the health consequences of \u27being fat\u27. Public health agencies play an important role in \u27alerting\u27 people about the risks that obesity poses both to individuals and to the broader society. Quantitative studies suggest people comprehend the physical health risks involved but underestimate their own risk because they do not recognise that they are obese.MethodsThis qualitative study seeks to expand on existing research by exploring obese individuals\u27 perceptions of public health messages about risk, how they apply these messages to themselves and how their personal and social contexts and experiences may influence these perceptions. The study uses in depth interviews with a community sample of 142 obese individuals. A constant comparative method was employed to analyse the data.ResultsPersonal and contextual factors influenced the ways in which individuals interpreted and applied public health messages, including their own health and wellbeing and perceptions of stigma. Individuals felt that messages were overly focused on the physical rather than emotional health consequences of obesity. Many described feeling stigmatised and blamed by the simplicity of messages and the lack of realistic solutions. Participants described the need for messages that convey the risks associated with obesity while minimising possible stigmatisation of obese individuals. This included ensuring that messages recognise the complexity of obesity and focus on encouraging healthy behaviours for individuals of all sizes.ConclusionThis study is the first step in exploring the ways in which we understand how public health messages about obesity resonate with obese individuals in Australia. However, much more research - both qualitative and quantitative - is needed to enhance understanding of the impact of obesity messages on individuals

    The Simons Observatory Large Aperture Telescope Receiver

    Get PDF
    The Simons Observatory (SO) Large Aperture Telescope Receiver (LATR) will be coupled to the Large Aperture Telescope located at an elevation of 5,200 m on Cerro Toco in Chile. The resulting instrument will produce arcminute-resolution millimeter-wave maps of half the sky with unprecedented precision. The LATR is the largest cryogenic millimeter-wave camera built to date with a diameter of 2.4 m and a length of 2.6 m. It cools 1200 kg of material to 4 K and 200 kg to 100 mk, the operating temperature of the bolometric detectors with bands centered around 27, 39, 93, 145, 225, and 280 GHz. Ultimately, the LATR will accommodate 13 40 cm diameter optics tubes, each with three detector wafers and a total of 62,000 detectors. The LATR design must simultaneously maintain the optical alignment of the system, control stray light, provide cryogenic isolation, limit thermal gradients, and minimize the time to cool the system from room temperature to 100 mK. The interplay between these competing factors poses unique challenges. We discuss the trade studies involved with the design, the final optimization, the construction, and ultimate performance of the system
    corecore