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Abstract

Background: Alterations in neurotransmitter phenotypes of specific neurons can cause imbalances in excitation
and inhibition in the central nervous system (CNS), leading to diseases. Therefore, the correct specification and
maintenance of neurotransmitter phenotypes is vital. As with other neuronal properties, neurotransmitter phenotypes
are often specified and maintained by particular transcription factors. However, the specific molecular mechanisms and
transcription factors that regulate neurotransmitter phenotypes remain largely unknown.

Methods: In this paper we use single mutant, double mutant and transgenic zebrafish embryos to elucidate the
functions of Lmx1ba and Lmx1bb in the regulation of spinal cord interneuron neurotransmitter phenotypes.

Results: We demonstrate that Imx7ba and Imx71bb are both expressed in zebrafish spinal cord and that Imx1bb is
expressed by both VOv cells and dI5 cells. Our functional analyses demonstrate that these transcription factors are not
required for neurotransmitter fate specification at early stages of development, but that in embryos with at least two
ImxTba and/or Imx1bb mutant alleles there is a reduced number of excitatory (glutamatergic) spinal interneurons at
later stages of development. In contrast, there is no change in the numbers of VOv or dI5 cells. These data suggest that
Imx1b-expressing spinal neurons still form normally, but at least a subset of them lose, or do not form, their normal
excitatory fates. As the reduction in glutamatergic cells is only seen at later stages of development, Lmx1b is probably
required either for the maintenance of glutamatergic fates or to specify glutamatergic phenotypes of a subset of later
forming neurons. Using double labeling experiments, we also show that at least some of the cells that lose their
normal glutamatergic phenotype are VOv cells. Finally, we also establish that Evx1 and Evx2, two transcription factors
that are required for VOv cells to acquire their excitatory neurotransmitter phenotype, are also required for Imx7ba and
Imx1bb expression in these cells, suggesting that Lmx1ba and Lmx1bb act downstream of Evx1 and Evx2 in VOv cells.

Conclusions: Lmx1ba and Lmx1bb function at least partially redundantly in the spinal cord and three functional Imx16
alleles are required in zebrafish for correct numbers of excitatory spinal interneurons at later developmental stages. Taken
together, our data significantly enhance our understanding of how spinal cord neurotransmitter fates are regulated.
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Background

Neurons in the central nervous system (CNS) must spe-
cify and maintain several properties in order to integrate
and function properly within neuronal circuitry [1]. One
crucial neuronal characteristic that must be specified
correctly and usually must be maintained (for some ex-
ceptions see [2]) is the neurotransmitter phenotype [1].
Failure to correctly specify or maintain neurotransmitter
phenotypes can result in incorrect levels of excitatory or
inhibitory neurotransmitter release and lead to dis-
eases such as epilepsy, autism spectrum disorder, and
Alzheimer’s [3-6].

Neurotransmitter phenotypes, like many other neur-
onal properties, are initially specified by transcription
factors that individual neurons express as they start to
differentiate [7—12]. These neurotransmitter phenotypes
are then maintained either by these same transcription
factors or by additional ones [7, 13-17]. However, in
many cell types the transcription factors that specify
and/or maintain neurotransmitter phenotypes are still
unknown. This is a critical gap in our knowledge and
one that we need to address in order to potentially de-
velop better treatments for some of the aforementioned
diseases and disorders.

In this paper, we investigate the functions of Lmx1b
transcription factors in the zebrafish spinal cord. Lmx1b
has been implicated in a variety of functions in different
regions of the vertebrate CNS including cell migration,
cell survival, as well as correct specification and/or
maintenance of cell identity, neuronal connectivity and
neurotransmitter phenotypes [18-25]. However, it re-
mains unclear if Lmx1b is required for neurotransmitter
specification and/or maintenance in the spinal cord.

Zebrafish have two LmxIb ohnologs, lmxlba and
Imx1bb, that we show are probably expressed in overlap-
ping spinal cord domains. Consistent with previous ana-
lyses in mouse, we show that lmx1bb is expressed by dI5
neurons, and for the first time in any animal, we show
that VOv neurons (cells that form in the ventral part of
the VO domain [11, 12, 26-31]) also express [mx1bb. Both
dI5 and VOv cells are glutamatergic [8, 11, 16, 31, 32] and
consistent with this we demonstrate that the vast majority
of Imx1bb-expressing cells are glutamatergic.

We also show in zebrafish /mx1bb homozygous mu-
tants that glutamatergic neurons are correctly specified
during early development but are reduced in number at
later developmental time points. Interestingly, we see
the same phenotype in lmxlba homozygous mutants,
Imx1ba;lmx1bb double mutants and [mxlba;lmx1bb
double heterozygous embryos suggesting that lmxiba
and [mx1bb act at least partially redundantly in a dose-
dependent manner and that three functional ImxIb
alleles are required for the specification or maintenance
of correct numbers of spinal cord glutamatergic cells at
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later developmental stages. In contrast to the reduction
in the number of glutamatergic neurons, there is no re-
duction in the numbers of VOv or dI5 cells in lmx1bb
homozygous mutants and there is no increase in cell
death. This suggests that [mxIb-expressing spinal neu-
rons are still present in normal numbers at these later
stages of development, but that fewer of them are gluta-
matergic. Interestingly, there is no increase in the num-
ber of inhibitory neurons, suggesting that the cells that
are no longer excitatory do not become inhibitory. Finally,
we demonstrate that [mx1ba and Imx1bb expression in
VOv cells requires Evx1 and Evx2. In combination with a
previous study that showed that Evxl and Evx2 are re-
quired for VOv cells to become glutamatergic [11], this
suggests that Lmxlba and Lmx1bb act downstream of
Evx1 and Evx2 either to maintain VOv glutamatergic fates
or to specify the glutamatergic fates of a later-forming
subset of VOv cells.

Methods
Zebrafish husbandry and fish lines
Zebrafish (Danio rerio) were maintained on a 14-h light/
10-h dark cycle at 28.5 °C. Embryos were obtained from
natural paired and/or grouped spawnings of wild-type
(WT) (AB, TL or AB/TL hybrid) fish or identified hetero-
zygous Imx1bb"™°,  Imxiba™°, evxl®Zevx2*° or
smoothened”®* mutant fish or Tg(slc17a6:EGFP) [formerly
called Tg(vGlut2a:EGFP)] [33] or Tg(evxl:EGFP SUL 1]
transgenic fish or mx1bb”*'’ crossed into the background
of either Tg(slc17a6b(vglut2a):loxP-DsRed-loxP-GFP)"'*
[41, 42] or Tg(evxl:EGFP)**" fish respectively. Embryos
were reared at 28.5 °C and staged by hours post
fertilization (h) and/or days post fertilization (dpf).
Most embryos were treated with 0.2 mM 1-phenyl 2-
thiourea (PTU) at 24 h to inhibit melanogenesis [34—36].
The evxI1?®?, evx2** and ImxIbb’*'° mutants have
been previously described [11, 37-39]. All three of these
mutations are single base pair changes that lead to pre-
mature stop codons before the homeobox. Therefore, if
any of these RNAs are not degraded by nonsense medi-
ated decay, the resulting proteins will lack the DNA
binding domain. Imx1ba™"*° mutant zebrafish were gen-
erated using TALENSs constructs that target the sequences
TCAAGTAGACATGCTGGACG and TCCGCTCCTGT
CCTGAACTG within the first exon of /[mxIba. Con-
structs were made using steps 1-38 outlined in [40]. To
generate mRNA encoding the TALENSs, approximately
5 ug of plasmid DNA was digested with Apol and purified
via the Invitrogen PureLink PCR Purification Kit (Ther-
moFisher, K310001). RNA was synthesized using the
Ambion mMessage mMachine T7 kit (ThermoFisher,
AM1344) with a poly(A) tail added from the Poly(A)
Tailing Kit (Ambion, AM1350) and purified with the
Megaclear Kit (Ambion, AM1908). 100 pg of RNA for
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each TALEN was co-injected into 1-cell WT embryos.
The Imx1ba™®’ allele was recovered and identified as
a single base pair deletion 20 bp into the coding se-
quence. This results in a frameshift after the first six
amino acids and a premature stop codon 11 amino
acids later. This stop codon is upstream of both the
Lim and homeobox domains, suggesting that this allele
is likely to be a complete loss of function.

Genotyping

DNA for genotyping was isolated from both anesthetized
adults and fixed embryos via fin biopsy or head dissec-
tions respectively. Fin biopsy and evxl and evx2 geno-
typing of adults were performed as previously described
[11, 37]. KASP assays, designed by LGC Genomics LLC,
using DNA extracted from head dissections, were used
to identify embryos carrying the evx1®®? and evx2**’
mutations. These assays use allele-specific PCR primers
which differentially bind fluorescent dyes that we quanti-
fied with a BioRad CFX96 real-time PCR machine to
distinguish genotypes. The proprietary primers used are:
Evx1_y32_i232 and Evx2_sal40.

Heads of fixed embryos were dissected in 80 % gly-
cerol/20 % phosphate-buffered saline (PBS) with insect
pins. Embryo trunks were stored in 70 % glycerol/30 %
PBS at 4 °C for later analysis. DNA was extracted via the
HotSHOT method [41] using 20 pL of NaOH and 2 pL
of Tris-HCl (pH-7.5).

The Imx1ba™"*’ and lmx1bb"*'° alleles were identified
by restriction enzyme digestion assays as both of these
mutations disrupt endogenous restriction enzyme sites.
For Imx1ba™®°, a 540 bp amplicon encompassing the
mutation site was generated with the following primers:

Forward GATCCTCAAGAGGAGCTCATACACA and
Reverse CATGCACATTTAACTATGATCTGAGCCGTG.

This amplicon was digested with MIuCI to vyield
311 bp and 142 bp and 87 bp (WT), 453 bp and 87 bp
(homozygous mutant), or 453 bp and 311 bp and 142 bp
and 87 bp (heterozygous mutant) products. Similarly, for
Imx1bb"*'° a 264 bp amplicon encompassing the mu-
tation site was generated with the following primers:
Forward GAAGGCTCGTCTCTGCTGTGTGGTG and
Reverse CGTTATGGATGCGCTGAGACTGAATACC.
This amplicon was digested with Bfal to yield 211 bp
and 53 bp (WT), 264 bp (homozygous mutant), or
264 bp and 211 bp and 53 bp (heterozygous mutant)
products.

Expression profiling VOv neurons & microarray design

To identify transcription factors expressed by VOv neu-
rons, VOv spinal neurons, all spinal cord neurons and
all cells within the trunk were isolated from live trans-
genic zebrafish embryos at 27 h using fluorescence acti-
vated cell-sorting (FACS). Prior to FACS, embryos were
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prim-staged, de-yolked, dissected and dissociated as in
[42, 43]. Heads and tails were removed from all samples
to ensure that only trunk or spinal cord cells were collected.
Trunk samples correspond to FAC-sorted trunk cells
(spinal cord and other tissues). All neuron samples are
EGFP-positive cells from Tg(elav13:EGFP) trunks [44]. VOv
neurons are EGFP-positive cells from Tg(evxl:EGFP)**"
trunks [11]. Total RNA was extracted using an RNeasy
Micro Kit (Qiagen, 74004). The quality of RNA was
assessed via an Agilent 2100 Bioanalyser (RNA 6000
Pico Kit, Agilent, 5067-1513) before being converted to
fluorescently-labeled ¢cDNA (Ovation Pico WTA Sys-
tem V2, Pico, 3302) and hybridized to a custom-
designed Agilent microarray (Agilent #027382). Data
pre-processing and normalization was performed using
Bioconductor software (https://www.bioconductor.org/). A
three-class ANOVA analysis was performed using GEPAS
software [45, 46]. Relative expression levels were subjected
to a Z-transformation normalization and are presented as
Z scores where mean = 0 and standard deviation = +1 (red)
to -1 (blue) [47-49]. All reported statistics were corrected
for multiple testing [50].

To generate the custom-designed Agilent microarray
(Agilent #027382) we first performed comprehensive
bioinformatic searches for proteins that contain at least
one of the 483 InterPro domains identified in [51] as
being specific to transcriptional regulators. These do-
mains comprise three functional classes: DNA binding,
chromatin remodeling and general transcription machin-
ery. We identified 3192 potential transcription factors.
2644 of these proteins were identified in Zv8 (Ensembl
release 54) of the zebrafish genome and a further 548
non-overlapping transcription factors were identified in
the zebrafish Unigene dataset (release 117). Our custom
arrays contain 33784 probes corresponding to eight dis-
tinct 60-mer probes for each of the transcripts associ-
ated with these 3192 proteins. We also included 170
housekeeping genes (five copies of eight probes each),
23 positive controls, such as neurotransmitter markers
(two copies of eight probes each) and 49 negative con-
trols (Arabidopsis sequences; multiple copies of eight
probes each) on the arrays. Four biological replicates
were performed per sample type. Microarray data are
deposited at NCBI GEO entry number GSE83723.

in situ hybridization

Embryos were fixed in 4 % paraformaldehyde and single
and double in situ hybridization experiments were per-
formed as previously described [52, 53]. Probes for in
situ hybridization experiments were prepared using the
following templates: evxl [30], evx2 [29], lbx1a [54] and
Imx1ba [24]. A probe for Imx1bb was generated from
c¢DNA as previously described [11, 43] with the follow-
ing primers: forward CTGGATATCAAGCCGGAGAA;
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reverse AATTAACCCTCACTAAAGGGATCCGAACA
TCACATTTCAACA. The Imx1bb probe sequence was
selected to avoid cross-hybridization with /mxI1ba and
other /mx1 family members.

To try and improve signal strength of the [mxIba
probe, we also hydrolyzed the full length /mx1ba probe
described above [24] to approximately 200 bp fragments
as outlined in [55] and tested two additional [mxl1ba
probes. The second probe was synthesized from a plas-
mid containing the last 584 bp of the coding sequence
of Imxlba. The third probe, which recognizes the 3’
coding sequence and UTR of lmxlba, was generated
from c¢DNA, as previously described [11, 43], with the
following primers: forward CGCATGCGTTGGTATCT
ATG; reverse AATTAACCCTCACTAAAGGGAAAGC
ATCCTCCACAATGTCC. As these probes did not im-
prove the signal quality when compared to the first
probe described above [24], results from these in situ
hybridization experiments are not included in this paper.

To determine neurotransmitter phenotypes, we used
in situ probes for genes that function as transporters of
neurotransmitters or that synthesize specific neurotrans-
mitters as these are some of the most specific molecular
markers of these cell fates (e.g. see [56] and references
therein). A mixture of probes to slc17a6a and sicl17a6b,
which encode glutamate transporters, was used to label
glutamatergic neurons [56, 57]. To label inhibitory cells
we used slc32al, which encodes a vesicular inhibitory
amino acid transporter [33]. To label glycinergic cells a
mixture of probes (glyt2a and glyt2b) for the gene slc6a5
were used [56, 57]. The slc6a5 gene encodes for a gly-
cine transporter necessary for glycine reuptake and
transport across the plasma membrane. GABAergic neu-
rons were labeled by a mixture of probes to gadlb and
gad2 genes (probes previously called gad67a, gad67b
and gad65) [56, 57]. The gadlb and gad2 genes encode
for glutamic acid decarboxylases, which are necessary
for the synthesis of GABA from glutamate.

Immunohistochemistry

Embryos were fixed in 4 % paraformaldehyde and stored
in PBS with 0.1 % tween20. To permeabilize embryos
they were treated with acetone at -20 °C for 30 min
(36 h or younger), 1 h (48 h) or 3 h (7 dpf) and then proc-
essed as previously described [11]. Primary antibodies were:
mouse anti-GFP (Roche Applied Science, 11814460001,
1:500), rabbit anti-DsRed (Clontech, 632496, 1:200) or
rabbit anti-activated caspase-3 (Fisher Scientific/BD,
BDB559565, 1:500). Secondary antibodies were: Alexa
Fluor 568 goat anti-rabbit (Molecular Probes, A11036,
1:500), Alexa Fluor 488 goat anti-mouse (Molecular
Probes, A11029, 1:500) or Alexa Fluor 488 goat anti-
rabbit (Molecular Probes, A11034, 1:500).
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Double stains

Both double in situ hybridization and immunohisto-
chemistry plus in situ hybridization double labeling ex-
periments were performed as in [52].

Acridine orange treatment

A stock acridine orange base (Sigma-Aldrich, 235474)
solution of 2.5 mg/mL in dimethyl sulfoxide (DMSO)
was made and stored at -20 °C until used. At 24 h, 36 h
and 48 h acridine orange stock solution was added to
embryo medium (5 mM NaCl, 0.17 mM KCI, 0.33 mM
CaCl, - 2H,0 and 0.33 mM MgSO,-7H,0 in water) to
make a final concentration of 5 pg/mL. Embryos were
bathed in the acridine orange / embryo medium solution
in the dark at 28.5 °C for 28 min. Embryos were then
washed five times in embryo medium for 5 min each
and analyzed using fluorescent microscopy on a Zeiss
Axio Imager M1 compound microscope and Olympus
SZX16 dissecting microscope.

Imaging

Embryos were mounted in 70 % glycerol, 30 % PBS and
differential interference contrast (DIC) pictures were
taken using an AxioCam MRc5 camera mounted on a
Zeiss Axio Imager M1 compound microscope. Embryos
from acridine orange experiments and anti-activated
caspase-3 experiments were mounted in 2 % 1,4-diazabi-
cyclo[2.2.2] octane (DABCO) and imaged in the same
way. Zeiss LSM 710 and LSM 780 confocal microscopes
were used to image embryos mounted in DABCO from
fluorescent in situ hybridization and immunohistochem-
istry experiments. Images were processed using Adobe
Photoshop software (Adobe, Inc), GNU Image Manipu-
lations Program (GIMP 2.6.10, http://gimp.org) and
Image | software (Abramoff et al. [58]). In some cases,
different focal planes were merged to show labeled cells
at different medial-lateral positions in the spinal cord.

Cell counts and statistics

For acridine orange staining and activated caspase-3 im-
munohistochemistry experiments, cells were counted
along both sides of the entire rostral-caudal axis of the
spinal cord. For all other experiments, we identified so-
mites 6-10 in each embryo and counted the number of
labeled cells in that stretch of the spinal cord. In all
cases, embryos were mounted laterally with the somite
boundaries on each side of the embryo exactly aligned
and the apex of the somite over the middle of the noto-
chord. This ensures that the spinal cord is straight along
its dorsal-ventral axis and that cells in the same dorsal/
ventral position on opposite sides of the spinal cord will
be directly above and below each other. Cell counts for
fluorescently-labeled cells were performed by analyzing
all focal planes in a confocal stack of the appropriate
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region(s) of the spinal cord. Labeled cells in embryos an-
alyzed by DIC were counted while examining embryos
on the Zeiss Axio Imager M1 compound microscope.
We adjusted the focal plane as we examined the embryo
to count cells at all medial/lateral positions (both sides
of the spinal cord; also see [7, 11, 52, 59]). Values are re-
ported as the mean +/- the standard error of the mean.
Results were analyzed using the student’s t-test.

Results

Imx1ba and Imx1bb are expressed by zebrafish dI5 and
VOv neurons

To identify transcription factors that may play a role in VOv
neuron specification and/or maintenance, we expression-
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profiled VOv neurons and compared them to all post-
mitotic neurons and all trunk cells (see methods; NCBI
GEO GSEB3723; [43]). These analyses identified lmxIba
and /mx1bb, zebrafish ohnologs of Lmx1b (Fig. 1a), as two
transcription factor genes potentially expressed in VOv neu-
rons. Prior to this study, the only report of lmxIb expres-
sion in the zebrafish spinal cord established that lmx1bb is
expressed in at least some rostral spinal neurons at 24 h
[24]. However, it was unclear if [mxIbb expression was re-
stricted to the rostral spinal cord and these earlier studies
did not detect Imx1ba expression in the spinal cord [24].
Therefore, to further confirm our microarray data, we ex-
amined the spinal cord expression of /mx1ba and lmx1bb
in more detail (Fig. 1).

> a Class 1 Class 2 Class 3

E P value Trunk AllNeurons VOV

P 0.02372115 Imx1ba

(] 0.01142452 Imx1bb

() 0.00001412 evxl

- 0.00634945 englb

[§) 0.00003040 myox_ﬂ

- 0.43124553 Bactin

z -1.0 -0.5 0.0 0.5 1.0
Imxlba Imx1bb

bar=50 um (b-g), 70 um (h-1) and 20 um (h’-I"")

Merge Imx1bb Ibxla Merge Imx1bb EGFP

Selh. 4

Tg(slc17a6:EGFP)

30h

Imx1bb sic17a6 Merge Imx1bb EGFP

Merge

Imx1bb sic32al

Merge

Fig. 1 Imx1b expression in zebrafish spinal cord. a Three-class ANOVA comparison of VOv cells (class 3), trunk cells (class 1) and all post-mitotic
neurons (class 2). p values test hypothesis that there is no differential expression among the 3 classes. Columns represent individual microarray
experiments. Rows indicate relative expression levels as normalized data, subjected to a Z-transformation where mean =0 and standard deviation
=1, where red = normalized expression value of +1 and blue = normalized expression value of -1 (see Methods for more details). Imx7ba and
Imx1bb are expressed by VOv neurons. Positive control evx] is also expressed by VOv neurons. Negative controls eng7b and myod1 are expressed
by other neurons (V1 cells) and trunk cells respectively. Bactin is a housekeeping gene that is expressed by all populations. b-l Lateral views of
zebrafish spinal cord at 27 h (b and ¢), 30 h (h-1), 36 h (d and e) and 48 h (f and g). Anterior left, dorsal top. in situ hybridization for Imx1ba (b, d
and f) and Imx16b (c, e and g). Black dashed line (b-g) is just below ventral limit of spinal cord, floor plate is right above this, in the most ventral
part of the spinal cord, roof plate is the most dorsal part of the spinal cord. Double in situ hybridization for Imx1bb (red) and /bxTa (green) in WT
embryo, merged view (h) and magnified single confocal plane of white dotted box region (h’-h"). in situ hybridization for Imx16b (red) and EGFP
immunohistochemistry (green) in Tg(evxl:EGFP)Sm embryo, merged view (i) and magnified single confocal plane of white dotted box region (i"-i
Double in situ hybridization for Imx1bb (red) and sic17a6 (green) in WT embryo, merged view (j) and magnified single confocal plane of white
dotted box region (j’-j"). in situ hybridization for Imx1bb (red) and EGFP immunohistochemistry (green) in Tg(slc17a6:EGFP) embryo, merged
image (k) and magnified single confocal plane of white dotted box region (k’-k’”). White dashed line (k) marks the dorsal limit of the spinal cord.
Red staining above the dashed line is outside the spinal cord. Double in situ hybridization for Imx1bb (red) and slc32al (green) in WT embryo,
merged image (I) and magnified single confocal plane of white dotted box region (I-I'”). In all cases (h-l) * indicates co-labeled cell, x indicates
single labeled Imx1bb-expressing cell. In all cases, at least two independent double-labeling experiments were conducted (h-l). Results were
similar for each replicate. Numbers of single and double-labeled cells and number of embryos counted are provided in Tables 1 and 2. Scale

= -m)
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At 27 h, Imxlba is expressed in a narrow dorsal-
ventral domain by interneurons in the most rostral re-
gion of the spinal cord, as well as in cells of the roof
plate and floor plate (Fig. 1b). As development pro-
gresses, additional interneurons start to express [mxlba
and expression extends more caudally in the spinal cord
(Fig. 1b, d and f, Table 1). By 48 h, lmx1ba expression is
no longer detected in the floor plate but is still present
in the roof plate and interneurons (Fig. 1f).

In contrast, at 27 h, ImxIbb spinal cord expression
already extends along the entire rostral-caudal axis in a
narrow dorsal-ventral domain (Fig. 1c). Like Ilmx1ba,
Imx1bb is also expressed in the roof plate and floor plate
at this stage. As development progresses, more spinal
cord neurons express /mx1bb and roof plate expression
becomes more prominent while floor plate expression is
lost by 36 h (Fig. 1c, e and g; Table 1). By 48 h, Imx1ba
and lmxI1bb are expressed in presumably overlapping
domains, although, as all /mxIba in situ probes tested
produced very weak staining (see methods), it was not
possible to confirm this with co-labeling experiments.

To determine the specific spinal cell types that express
Imx1bb we performed double-labeling experiments. In
mouse, Lmx1b is expressed by dI5 neurons that also ex-
press Lbx1 [18, 32, 60—64]. To test if this is also the case
in zebrafish, we performed a double in situ hybridization
for Imx1bb and [bxIla. At 30 h we found that approxi-
mately 45 % of Imx1bb-expressing cells co-express lbxla
(Fig. 1h; Table 2). These results suggest that only a sub-
set of lmx1bb-expressing neurons are dI5 neurons. In
mouse three populations of neurons (dI4, dI5 and dI6)
express the transcription factor Lbx1 but only the excita-
tory dI5 neurons express Lmx1b while inhibitory dI4
and dI6 cells do not [18, 32, 60—64]. Similarly, we find
that in the zebrafish spinal cord only 33 % of [bxla-ex-
pressing cells co-express Imx1bb (Fig. 1h; Table 2).

As mentioned above, our expression profiling of VOv
neurons suggested that zebrafish /mx1b genes may also
be expressed by these cells (Fig. 1a). To confirm these
results we performed EGFP immunohistochemistry and
ImxIbb in situ hybridization in Tgleval:EGFP)*"! embryos
that express EGFP in VOv neurons [11]. These experiments

Table 1 Imx7ba and Imx1bb are expressed in zebrafish spinal cord

ImxTba-expressing cells Imx1bb-expressing cells

27h 30h 36h 48h 27h 30h 36h 48h
Mean 35 86 11.8 225 311 376 57 804
SEM 1 1.8 0.5 24 14 1.7 13 19
n 4 5 4 4 11 15 4 5

Mean number of interneurons (roof and floor plate expression is excluded)
expressing Imx1ba (columns 2-5) or Imx1bb (columns 6-9) at 27, 30, 36 and
48 h in the spinal cord region adjacent to somites 6-10. SEM indicates the
standard error of the mean for each time point analyzed. n is the number of
embryos analyzed. The Imx71ba probe is very weak so it is possible that we
only detected the most strongly-expressing spinal cord cells
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Table 2 Co-expression of other genes with Imx7bb

Imx1bb + Tg(slc17a6:EGFP) double labeling experiments

30h Imx1bb Tg(slc17a6:EGFP) co-labeled

Mean 30 105.7 21

SEM 3 9.7 2.2

n 7 7 7

% 70 % 20 % n/a
Imx1bb + slc17a6 double labeling experiments

30h Imx1bb slc17a6 co-labeled

Mean 325 99.8 258

SEM 1.1 44 1.3

n 4 4 4

% 79 % 26 % n/a
Imx1bb + slc32al double labeling experiments

30h Imx1bb slc32al co-labeled

Mean 283 142.7 3

SEM 1.2 24 0.6

n 6 6 6

% 10 % 2% n/a
Imx1bb + Tg(evx1:EGFP) double labeling experiments

30 h Imx1bb Tg(evx1:EGFP) co-labeled

Mean 36 70.5 135

SEM 2.1 24 1.7

n 6 6 6

% 38 % 19 % n/a
Imx1bb + Ibx1a double labeling experiments

30h Imx1bb lbx1a co-labeled

Mean 294 40 133

SEM 1.7 2.7 1

n 7 7 7

% 45 % 33 % n/a

Number of cells detected in co-labeling experiments. Mean number of cells
that express Imx1bb (column 2), or gene being assessed for co-expression
(column 3) in the spinal cord region adjacent to somites 6-10. Column 4
shows the number of these cells that have co-localized expression. SEM values
indicate the standard error of the mean for each value. n values are the
number of embryos counted and averaged for each result shown here. %
values indicate the percentage of Imx71bb-expressing cells that have co-localized
expression with other genes being assessed (column 2) or the % of cells that
expressed other genes that have co-localized expression with Imx1bb (column 3)

showed that at 30 h at least 38 % of lmxIbb-expressing
neurons are VOv neurons (Fig. 1i; Table 2).

Both VOv cells and dI5 cells are glutamatergic [8, 11,
16, 33, 34]. Moreover, Lmxlb-expressing neurons are
glutamatergic in the amniote spinal cord [8, 16, 32].
Therefore, to further confirm the identity of zebrafish
Imx1bb-expressing spinal neurons we performed double-
labeling experiments. Double in situ hybridization for
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Imx1bb and glutamatergic markers slc17a6a + slc17a6b
(a mixture of probes for both genes, referred to here as
slc17a6; see methods), showed that at 30 h at least 79 %
of Imx1bb-expressing cells co-express slci7a6 (Fig. 1j;
Table 2). To further confirm that most [mx1bb-express-
ing neurons are glutamatergic, we also performed double
staining for EGFP and [mx1bb in 30 h Tg(slc17a6:EGFP)
embryos in which many glutamatergic neurons express
EGEFP [33, 65-67]. In these embryos, we found that ap-
proximately 70 % of lmx1bb-expressing neurons also ex-
press EGFP (Fig. 1k; Table 2). In contrast, double in situ
hybridization with [mx1bb and slc32al, which labels all
spinal cord inhibitory neurons [33, 68], revealed that
only 10 % of lmxIbb neurons are inhibitory (Fig. 1
Table 2). Taken together, these data suggest that the vast
majority of zebrafish Imx1bb-expressing cells are gluta-
matergic and that these glutamatergic cells correspond
to dI5 and VOv neurons.

Imx1bb is required for glutamatergic neurotransmitter
phenotypes at later developmental stages but does not
repress inhibitory neurotransmitter phenotypes

To investigate the functions of /mxI1ba and lmx1bb in
the zebrafish spinal cord we used mutations in each of
these genes (see methods). We consider that both of
these mutant alleles are likely to cause a complete loss
of function as they result in premature stop codons be-
fore the homeobox (lmx1bb) or before both the homeo-
box and the lim domains (Imx1ba) (see methods). In
fact, if the mutated /mxIba RNA is translated, it would
consist of only six amino acids of WT sequence followed
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by 11 altered amino acids. To test if the RNAs are de-
graded by nonsense mediated decay, we performed in
situ hybridization for each gene in the respective mutant.
For [mxlba, we do not see any obvious changes in
Imx1ba RNA (Fig. 2b). In contrast, we see a loss of
Imx1bb RNA in the spinal cord of /mx1bb homozygous
mutants (Fig. 2f), although some, potentially weaker
than normal, expression remains in other regions of the
embryo. This suggests that at least Lmx1bb function is
completely lost from the spinal cord.

Since we see a loss of [mx1bb spinal cord expression in
Imx1bb mutants and [mx1bb is expressed by more spinal
interneurons at an earlier developmental time point than
Imx1ba, we first examined the function of lmxi1bb. As
Imx1bb is expressed predominantly by glutamatergic neu-
rons in the spinal cord, we assessed the expression of the
glutamatergic marker slc17a6 at 27, 36, and 48 h [18, 32].
At 27 h there was no statistically significant difference in
the number of glutamatergic neurons in the spinal cord
(p =041, Fig. 3a, b and g; Table 3). However, at 36 h there
was a statistically significant reduction in the number of
glutamatergic neurons in /mxIbb mutants compared to
WT siblings (p <0.001, Fig. 3¢, d and g; Table 3) and this
reduction became more pronounced by 48 h (p <0.001,
Fig. 3e-g; Table 3). Taken together, these results suggest
that lmx1bb is required either to maintain the glutamater-
gic phenotype of a subset of excitatory spinal neurons or
to specify the glutamatergic phenotype of a later-forming
subset of neurons.

To determine if these neurons switch their neurotrans-
mitter phenotype in I[mx1bb mutants we examined

WT

Imx1iba”

Imx1bb”

Imx1ba

Imx1bb

each experiment. Scale bar =50 um

Fig. 2 Expression of Imx7b RNAs in Imx1b mutants. Lateral view of zebrafish spinal cord at 48 h (a-f). Anterior left, dorsal top. in situ hybridization
of ImxTba (a-c) or Imx1bb (d-f) in WT (a and d), Imx7ba mutant (b and e) and Imx7bb mutant (c and f). Lower magnification insert in (f) shows
expression remaining in hindbrain region. The rest of the head was removed for genotyping. One in situ hybridization of at least 40 embryos was
conducted for each of b and e. Two independent in situ hybridizations of at least 50 embryos each were conducted for a, ¢, d and f. In these
cases, results were the same for each replicate experiment. At least three genotyped mutant and wild-type embryos were analyzed in detail for
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Fig. 3 Imx7bb is required for glutamatergic phenotypes at later developmental stages but does not repress inhibitory phenotypes. Lateral view of
zebrafish spinal cord at 27 h (a, b, h and i), 36 h (c, d, j and k) and 48 h (e-f', I, m and o-t), anterior left, dorsal top. in situ hybridization for
slc17a6a + slci7a6b (sici7a6) (a-f), sic32al (h-m), gad1b + gad? (GAD) (o, p), slcéa5 (q and r) and pax2a (s and t). (¢’ and f’) are magnified views
of black dashed box region in (e and f) respectively. Mean number of cells (y-axis) expressing markers sic17a6 (g), sic32al (n) and GAD, slc6a5 or
pax2a at 48 h (u) in spinal cord region adjacent to somites 6-10 in WT embryos (white) and Imx1bb homozygous mutants (grey) (x-axis). Statistically
significant (p < 0.05) comparisons are indicated with square brackets and stars. Error bars indicate standard error of the mean. Two independent
experiments were conducted for all sic17a6 and slc32a1 experiments (a-m). Cells count results were similar for each replicate. One experiment was
conducted for (o-t). Cell count data presented here (g, n and u) are average values for 4 to 17 embryos from the same in situ hybridization experiment.
Precise numbers of embryos counted and p values are provided in Tables 3 and 4. Scale bar =50 um (a-f, h-m and o-t) and 25 um (e’ and f)

markers of inhibitory cells. We did not detect any sta-
tistically significant changes in the number of inhibitory
neurons expressing slc32al at 27 h, 36 h, or 48 h in
Imx1bb mutant embryos (p=0.77, 0.85 and 0.48 re-
spectively; Fig. 3h-n; Table 3). To further confirm these
results, we examined the expression at 48 h of gadlb +
gad?2 (a mixture of probes for both genes, referred to
here as GADs), which specifically label GABAergic neu-
rons [69-71], and slc6a5, which specifically labels glyci-
nergic neurons [72-75]. Consistent with the slc32al

findings, we also saw no statistically significant change
in the number of GABAergic or glycinergic spinal neu-
rons in /mx1bb mutants when compared to WT siblings
(p = 0.54 and 0.38 respectively; Fig. 3o-r and u; Table 4).
We also examined expression of pax2a, which encodes
for a transcription factor that is required for the inhibi-
tory neurotransmitter phenotypes of several classes of
spinal interneurons [7, 9, 10, 13, 17]. Consistent with
our other results, pax2a expression was unchanged in
Imx1bb mutants (p=0.7; Fig. 3s-u; Table 4). Taken
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Table 3 Lmx1bb is required for excitatory and not inhibitory
neurotransmitter phenotypes

27 h 36 h 48 h

Marker WT  Imx1bb” WT  Imx1bb” WT  Imx1bb”
slc17a6  Mean 1216 1272 1372 1236 211 175

SEM 53 4.1 2.5 24 55 29

n 10 10 13 17 10 13

pvalue 0411 <0.001 <0.001
slc32al Mean 149.7 148 1732 1697 2105 202

SEM 27 58 109 171 4 10.8

n 10 6 14 7 12 6

p value 077 0.85 048

Mean number of sic17a6a + slc17a6b (slc17a6) or slc32al-expressing cells
counted in the spinal cord region adjacent to somites 6-10 in 27 h, 36 h and 48 h
embryos. SEM is the standard error of the mean. n is the number of embryos
analyzed for each data set. p value is from a student’s paired t-test comparing WT
and Imx7bb mutant embryos. Statistically significant p values are indicated in bold

together, these results suggest that there is no change in
the number of inhibitory spinal neurons in [mxI1bb
mutants.

Imx1ba and Imx1bb single mutants and Imx1ba;Imx1bb
double mutants have the same spinal cord phenotype

As shown above (Fig. 1d-g), Imxlba and IlmxIbb are
expressed in potentially overlapping domains within the
zebrafish spinal cord during the developmental time
points that we detected neurotransmitter phenotypes in
Imx1bb mutants. This suggested that these two ohnologs
might function redundantly in the spinal cord. Therefore,
we examined spinal cord neurotransmitter phenotypes in
Imx1ba single and Imx1ba;lmx1bb double mutants.

When we examined [mxIba single mutants at 48 h,
we found that the number of glutamatergic neurons
were statistically significantly reduced (p <0.001) com-
pared to WT siblings (Fig. 4e, €’ and h; Table 5). Interest-
ingly, the number of glutamatergic neurons lost in the
Imx1ba mutant was not statistically significantly differ-
ent from the number of glutamatergic neurons lost in
the Imx1bb mutant (p =0.7; Fig. 4f, f" and h; Table 5).
More surprisingly, we also found that the number of
spinal cord glutamatergic neurons lost in lmx1ba;lmx1bb
double mutants, was not statistically significantly different
from either [mxiba single mutants (p =0.78) or lmx1bb
single mutants (p = 0.45; Fig. 4g, g’ and h; Table 5).

Given the similarity of the phenotypes in ImxI1ba and
Imx1bb single and double mutants, we tested whether
Imx1bb is required for lmx1ba spinal cord expression or
vice versa. However, when we analyzed expression of
Imx1ba in lmx1bb mutants and expression of [mx1bb in
Imx1ba mutants we saw no obvious differences between
WT and mutant embryos (Fig. 2c and e). This suggests
that the phenotypic similarities between the mutants are
not due to cross-regulation of these two /mx1b genes.
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Table 4 Expression of genes in WT and Imx7bb mutant embryos

Marker 48 h WT Imx1bb”"
GAD Mean 114.2 109.5
SEM 12 45
n 5 4
p value 0.54
slc6as Mean 2083 201.2
SEM 49 6.2
n 6 6
p value 0.38
pax2a Mean 138 140
SEM 34 34
n 7 5
p value 0.7
Ibx1a Mean 96.5 96.1
SEM 3.6 24
n 8 8
p value 0.93
evx Mean 90.9 92.1
SEM 19 39
n 10 6
p value 0.78
Tg(evx1:EGFP)Y Mean 949 2.3
SEM 26 0.94
n 8 8
p value 063

Mean number of gad1b + gad2 (GAD), slc6a5, pax2a, Ibx1a, evx1 + evx2 (evx) or
Tg(evx1:EGFP)*Y’-expressing cells in the spinal cord region adjacent to somites
6-10 in 48 h embryos. SEM is the standard error of the mean. n is the number
of embryos analyzed for each data set. p value is from a student’s paired t-test
comparing WT and Imx1bb mutant embryos

Together, these results suggest that /mx1ba and lmx1bb
function partially redundantly in the spinal cord and that
the presence of two or more mutant alleles (regardless of
whether the mutation is in /mx1ba or Imx1bb) is sufficient
to cause a reduction in the number of glutamatergic cells
in the spinal cord. To test this, we examined the number
of glutamatergic spinal neurons in lmx1ba;lmx1bb double
heterozygous embryos and both lmx1ba and lmx1bb sin-
gle heterozygous embryos. Consistent with our hypothesis,
the reduction in the number of glutamatergic neurons in
Imx1ba;lmx1bb double heterozygous embryos was not
statistically significantly different from the reduction in
Imx1ba mutants (p = 0.66), [mx1bb mutants (p = 0.38) or
Imx1ba;lmx1bb double mutants (p = 0.78; Fig. 4d, d’ and
h; Table 5). In contrast, neither /mxI1ba nor lmx1bb single
heterozygous embryos had a statistically significant reduc-
tion in the number of glutamatergic neurons when
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Fig. 4 Three functional Imx16 alleles are required for correct numbers of glutamatergic cells at later developmental stages. Lateral view of
zebrafish spinal cord at 48 h (a-g’, i and j), anterior left, dorsal top. in situ hybridization for sici7a6a + sic17a6b (sic17a6) (a-g’) and slc32al (i and j).
(a’-g’) are magnified views of black dashed box regions in panels (a-g). Columns on left indicate Imx7ba and Imx1bb genotype. Mean number of
cells (y-axis) expressing slc17a6 (h) and sic32al (k) in spinal cord region adjacent to somites 6-10 at 48 h (x-axis). Square brackets and star in (h)
indicates that each of the first three columns is statistically significantly different from each of the last four columns (p < 0.05). Embryo genotype
is indicated below graph. Error bars indicate standard error of the mean. Two independent experiments were conducted for (a-g). Cell count
results were similar in each replicate. One experiment was conducted for (i and j). Cell count data presented here (h and k) are average values of
4-13 embryos. Precise numbers of embryos counted and p values are provided in Table 5. Scale bar (g) =50 um (a-g) and 20 um (a’-g’) and
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sic32al

number of cells

compared to WT siblings (p=0.72 and p=0.3 respect-
ively; Fig. 4b-c’ and h; Table 5).

To test the possibility that /mx1ba might compensate for
the loss of /mx1bb in the repression of inhibitory neuro-
transmitter phenotypes, we also analyzed the expression of
sle32al in Imx1ba;lmx1bb double mutants. However, like

the lmxIbb single mutant results, the Ilmxl1ba;lmx1bb
double mutants had no statistically significant change (p =
0.94) in the number of spinal inhibitory neurons (Fig. 4i-k;
Table 5). These data suggest that /mxlba and lmx1bb are
not required to repress (or specify) inhibitory neurotrans-
mitter phenotypes and that the reduction in spinal cord
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Table 5 Imx7ba and Imx1bb mutant alleles act redundantly in a dose-dependent manner

48 h Imx1ba*’* Imx1ba™” Imx1ba*’* Imx1ba"” Imx1ba” Imx1ba™"* Imx1ba”
Imx1bb™"* Imx1bb™"* Imx1bb™" Imx1bb™" Imx1bb™"* Imx16b™ Imx16b™

slc17a6 Mean 2463 250.2 2338 196.4 1994 204.5 193.1

SEM 74 59 45 55 104 10 6.2

n 8 5 4 8 11 9 13

p value 1 n/a 0.72 03 0.001 0.001 0.003 0.001

p value 2 0.3 0.08 n/a 0.005 0.03 0.05 0.004

p value 3 0.001 0.001 0.005 n/a 0.66 0.38 0.78

p value 4 0.003 0.004 0.05 038 0.7 n/a 045

p value 5 0.001 0.001 0.03 0.66 n/a 0.7 0.78
slc32al Mean 179.8 188.5

SEM 129 14.1

n 6 6

p value 1 n/a 0.94

Mean number of sic17a6a + slc17a6b (slc17a6) or slc32al-expressing cells detected in the spinal cord region adjacent to somites 6-10 in 48 h embryos. SEM is the
standard error of the mean. n is the number of embryos analyzed for each data set. p values are from student’s paired t-test. Statistically significant p values are
indicated in bold. p value 1 is from comparing WT (Imx1ba**;imx1bb™*) embryos pairwise with all other genotypes, p value 2 is from comparing Imx1ba**;Imx1bb*"
embryos pairwise with all other genotypes, p value 3 is from comparing Imx1ba™;imx1bb™" embryos pairwise with all other genotypes, p value 4 is from comparing
Imx1ba™*;Imx1bb”" embryos pairwise with all other genotypes and p value 5 is from comparing Imx1ba”; Imx1bb™* embryos pairwise with all other genotypes

glutamatergic cells in these mutants does not correlate
with an increase in inhibitory cells.

The reduction in spinal glutamatergic cells is not due to
cell death

To test whether the reduction in glutamatergic neurons
might be an indirect consequence of increased cell
death, we used both acridine orange (AO) and an acti-
vated caspase-3 antibody [76, 77]. As the glutamatergic
phenotype is comparable among [mx1ba;lmx1bb double
mutants and both single mutants, we used [mx1bb single
mutants for these and all subsequent experiments.

AO is a vital dye that labels apoptotic cells in live zeb-
rafish embryos [76, 78—-81], as demonstrated in our posi-
tive control, smoothened mutant embryos, where many
cells undergo apoptosis [76] (Fig. 5a-b’). We performed
AO staining in [mx1bb mutants at 36 h, when we first
observe a reduction in the number of glutamatergic
spinal cells, and at 48 h, when the loss of glutamatergic
spinal cord cells is more pronounced. At both of these
time points there were no obvious differences in spinal
cord AO staining in any of the live embryos derived
from incrosses of heterozygous /mx1bb mutants (Fig. 5c-
f’). Following imaging and analysis, a subset of embryos
were genotyped to confirm that we had analyzed both WT
and /mx1bb homozygous mutant embryos. These analyses
demonstrated that there was no apparent correlation be-
tween the amount of AO staining and embryo genotype.

To confirm these results, we also assayed cell death
using an activated caspase-3 antibody that has previously
been used to successfully identify dying cells in zebrafish

[82-84]. Activated caspase-3 immunohistochemistry was
performed on embryos at 36 h, which is the first time
point we detected a reduction of glutamatergic neurons,
48 h, when there is a larger reduction, and 72 h, which
is 36 h after we first detected a reduction of glutamater-
gic neurons. At all of these stages we found no statisti-
cally significant difference in the number of activated
caspase-3 cells when comparing WT and /mx1bb mutant
embryos (p=0.63 at 36 h; p=04 at 48 h; p=0.46 at
72 h; Fig. 5g-k; Table 6). Taken together, these AO and
activated caspase-3 experiments suggest that there is no
increase in cell death in /mx1bb mutant spinal cords, at
least between 36 and 72 h.

VOv and dI5 cells form in normal numbers in Imx1bb
mutants

Since Imx1bb is co-expressed by both [bxIla-express-
ing dI5 cells and evx-expressing VOv neurons (Fig. 1h
and i), we also examined whether [bxIa or evxl + evx2
(a mixture of probes for both genes, referred to here
as evx) expression was altered in [mx1bb mutants. At
48 h there was no statistically significant difference in
the number of cells expressing lbxIa or evx in Imx1bb
mutants compared to WT siblings (p=0.93 and p =
0.78 respectively; Fig. 6a-d and g; Table 4). Addition-
ally, there was no statistically significant change in the
number of EGFP-labeled VOv neurons in /mx1bb mu-
tants expressing the Tg(eval:EGEP)*"! transgene when
compared to WT siblings (p = 0.63; Fig. 6e-g; Table 4).
These data suggest that Lmx1bb function is not re-
quired for either /bxla or evx expression and that VOv
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provided in Table 6. Scale bar =100 um (a-j) and 80 um @)

Fig. 5 There is no increase in apoptosis in Imx71bb mutants between 36 h and 72 h. Lateral view of zebrafish spinal cord at 27 h (@-b’), 36 h (c-d’ and g-h’)
and 48 h (e-f" and i"), anterior left, dorsal top. Acridine orange (AO) treatment (a-") and activated caspase-3 immunohistochemistry as anterior-posterior
montages (g-j). Sib. in (@) is a sibling embryo to smoothened mutant in (b). (@'j’) are magnified view of corresponding boxed region. Mean number of cells
(y-axis) with activated caspase-3 staining in WT embryos (white) and Imx1bb homozygous mutants (grey) (x-axis) at indicated developmental times. Error
bars indicate standard error of the mean. Two independent experiments were conducted for (c-j). Expression (a-j) and cell count data (k) were similar in
each replicate. Data presented in (k) are average values of 5-8 embryos from the same experiment. Precise number of embryos counted and p values are

and dI5 cells form in normal numbers in /mx1bb mu-
tants. This is consistent with our previously described
apoptosis assays which suggest that spinal neurons are
not dying in these mutants (Fig. 5). Furthermore, these
findings suggest that there is no effect on VOv or dI5
cell proliferation and that these cells are not transfat-
ing into different cell types in the ImxIbb mutants,
they are just losing or do not develop their gluta-
matergic fates.

Imx1bb is required for the glutamatergic phenotype of at
least a subset of VOv interneurons

As described above (Fig. 1i), we have shown for the first
time in any animal that at least a subset of VOv neurons
express [mx1bb. To test whether VOv cells in particular
are affected in /mx1bb mutants we performed double la-
bels for EGFP and slc17a6 in WT and [mx1bb mutant
Tg(evaI:EGFP)*"" embryos. We found that at 48 h, there
is a significant reduction in the number of glutamatergic
double-labeled VOv cells in mutant embryos compared
to their WT siblings (p < 0.001; Fig. 7a, b and e; Table 7).
This suggests that at least some of the cells that are los-
ing their glutamatergic phenotypes in /mxIbb mutants
are VOv neurons.

We were also interested in establishing if the reduction
of glutamatergic cells in general and/or the reduction in
the number of glutamatergic VOv cells persists at later
stages of development. As our slc17a6 RNA probe does
not label cells effectively in double staining experi-
ments at later stages of development, we created fish
transgenic for both Tg(slc17a6b:loxP-DsRed-loxP-GFP)"'*
and Tglevx:EGFP)*" and heterozygous for the ImxIbb
mutation. Embryos from these parents express DsRed
in glutamatergic neurons and EGFP in VOv neurons

[11, 85, 86]. We then counted single and double-
labeled cells in WT and [mx1bb mutant embryos at 7
dpf to determine if the number of excitatory cells and
excitatory VOv neurons in particular were reduced in
the /mx1bb mutants. We again observed a statistically
significant (p < 0.005) reduction in the total number of
glutamatergic, DsRed-labeled neurons (Fig. 7d and f;
Table 7) as well as a statistically significant reduction in
the number of glutamatergic DsRed-labeled VOv neurons
(p <0.001; Fig. 7d and f; Table 7) in lmx1bb mutant em-
bryos compared to WT siblings. More surprisingly, we
also observed a very small but statistically significant
(p =0.002) reduction in the number of VOv (EGFP-la-
beled) neurons at 7 dpf in /mx1bb mutants (Fig. 7d”
and f; Table 7). However, this slight reduction was
substantially less than the reduction in double-labeled
glutamatergic VOv neurons, demonstrating that the
second result cannot be explained by the first. Taken
together, these results suggest that [mx1bb is required
for the glutamatergic neurotransmitter phenotype of
at least a subset of VOv neurons at later developmen-
tal stages.

Imx1ba and Imx1bb expression requires evx1 and evx2

Evx1 and Evx2 function partially redundantly to specify
the glutamatergic neurotransmitter phenotype of VOv
neurons [11]. As demonstrated above (Fig. 7), lmx1bb
is required at later developmental stages for the gluta-
matergic neurotransmitter phenotype of at least a sub-
set of VOv neurons and evxl and evx2 spinal cord
expression is normal in [mx1bb mutants (Fig. 6c-g),
suggesting that Evx1 and Evx2 do not act downstream
of Lmx1b in VOv cells. To determine whether Lmx1b

Table 6 Activated caspase-3 is not increased in zebrafish Imx7bb mutants during the first 72 h of development

36 h 48 h 72 h
Marker WT Imx1bb”" WT Imx16b”" WT Imx1bb”"
Activated Caspase-3 Mean 1.1 1.8 28 1.8 04 1
SEM 0.77 0.94 0.95 0.58 0.24 0.68
n 8 7 6 5 6 5
p value 063 04 046

Mean number of activated caspase-3-expressing cells at 36, 48 and 72 h within the entire spinal cord. SEM is the standard error of the mean. n is the number of
embryos analyzed for each experiment. p value is from a student’s paired t-test comparing WT embryos and Imx7bb homozygous mutants
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Fig. 6 Imx7bb is expressed by dI5 and VOv neurons and these cells form in normal numbers in Imx7bb mutants. Lateral view of zebrafish spinal
cord at 48 h (a-f), anterior left, dorsal top. in situ hybridization for Ibx7a in WT (a) and Imx7bb homozygous mutant (b) embryos. in situ hybridization for
evx] +evx2 (evx) in WT (c) and Imx7bb homozygous mutant (d) embryos. Immunohistochemistry for EGFP in 7'g(evx7:EGFP)5U7 WT (e) and Imx1bb
homozygous mutant (f) embryos. g Mean number of cells (y-axis) in WT embryos (white) and Imx1bb homozygous mutants (grey) expressing lbx1a,
evx or Tg(evx1:EGFP’Y in spinal cord region adjacent to somites 6-10 (x-axis). Two independent experiments were conducted for (a-f). Cell count
results were similar in each replicate. Data shown here (g) are average values of 6-10 embryos from the same experiment. Precise number of embryos
counted and p values are provided in Table 4. Error bars indicate standard error of the mean. Scale bar =50 um (a-f)

acts downstream of Evx1 and Evx2 or in a parallel path-
way we examined [mx1b expression in evxI;evx2 double
mutants. At 30 h we found that there was a statistically
significant reduction in the number of /mx1ba (p = 0.029)
and [mx1bb (p<0.001) expressing spinal cord cells in
evxlevx2 double mutants when compared to WT siblings
(Fig. 8a-e; Table 8). This suggests that these two genes re-
quire Evx function for their expression in VOv cells and
that they are downstream of evxI and evx2 in these cells
(Fig. 8f).

Discussion

In this paper we demonstrate that /mx1ba and Imx1bb
(zebrafish ohnologs of LmxIb) are both expressed by
spinal cord interneurons during development (Figs. 1, 2
and 8). This is consistent with a previous report where
Imx1bb was shown to be expressed by anterior spinal
neurons [24], but in contrast, this earlier study suggested
that /mx1ba was not expressed in the zebrafish spinal
cord [24]. Given that we have only detected very weak
spinal cord staining with our in situ hybridizations for
Imx1ba, despite trying three different RNA in situ
probes (see methods), we think that the spinal cord
staining of lmx1ba was too weak to be easily detected in
these previous experiments.

Consistent with results in mouse [16, 18, 32, 62—64, 87],
we demonstrate here that in the zebrafish spinal cord
Imx1bb is predominantly expressed by glutamatergic neu-
rons (Fig. 1j and k). Our results demonstrate that at least
79 % of Imxlbb-expressing neurons are glutamatergic
(Fig. 1j and k; Table 2). We consistently see fewer labeled
cells with the Tg(slc17a6:EGFP) and Tg(slc17a6b:loxP-
DsRed-loxP-GFP)"™'* lines than we do with single in situ
hybridization for slc17a6 (Fig. 1j and k; Table 2; data not
shown), suggesting these transgenic lines either do not
label all spinal cord glutamatergic cells at the stages exam-
ined or there is a delay in the expression of the fluorescent
proteins compared to slc17a6 RNA. slc17a6 is also not a
strong probe in double-labeling experiments and as a re-
sult it labels slightly fewer cells in double in situ hybridiza-
tions than in single in situ hybridizations. This suggests
that some of the lmx1bb-positive, slc17a6-negative cells in
our double labels may also be glutamatergic. Therefore, it
is possible that more than 79 % of [mx1bb-expressing neu-
rons are glutamatergic, especially as we also show that
only about 10 % of Imx1bb-expressing cells are inhibitory
(Fig. 1L; Table 2).

Also consistent with results in amniotes [16, 18, 32,
62—64, 87], our analyses suggest that a subset of lmx1b-
expressing spinal cord cells are dI5 cells. dI5 cells
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Fig. 7 Imx1bb is required for VOv intereuron glutamatergic fates at later stages of development. Lateral view of zebrafish spinal cord at 48 h (a and b)
and 7 dpf (c and d), anterior feft, dorsal top. in situ hybridization sic17a6 (red) and EGFP immunohistochemistry (green) in WT (@) and /mx1bb mutant
(b) Tg(evx]:EGFP)Sw embryos. Single magnified confocal plane from white dashed box region (a’-a" and b’-b"). Immunohistochemistry for EGFP
(green) and DsRed (red) in WT (c) and Imx1bb mutant (d) Tg(slc 7a6b(vglut2a)loxP-DsRed-loxP-GFP)™™ " Tg(evx1:EGFPI*Y" embryos. Single magnified
confocal plane from white dashed box region (¢’-¢”” and d’-d"”). * indicates co-labeled cell, x indicates single labeled EGFP-expressing (VOv) cell. (e and
f) Mean number of cells (y-axis) expressing slc17a6 or DsRed (glutamatergic), EGFP (VOv) and sic17a6 or DsRed + EGFP (co-labeled) (x-axis) in WT (white)
and Imx1bb homozygous mutants (grey). Error bars indicate standard error of the mean. Three independent experiments were conducted for (c and d).
Cell count results were similar in each replicate. One experiment was conducted for (a and b). Data shown here (e and f) are average values of 5-12
embryos. Precise number of embryos counted and p values are provided in Table 7. The glutamatergic and VOv numbers include co-labeled cells.
Statistically significant (p < 0.05) comparisons are indicated with square brackets and stars. Scale bar =30 um (a-d) and 25 um (@’-d")

constitute about a third of all LbxI-expressing spinal
cord cells and they are also the only excitatory, LbxI-ex-
pressing spinal cells [8-10, 16]. We find that at least
45 % of Imx1bb-expressing spinal cells co-express [bxla
and that these co-expressing cells constitute about a
third of the [bxla-expressing cells (Fig. 1h; Table 2). To-
gether with the fact that most [mx1bb-expressing cells

are glutamatergic, this suggests that at least most of the
cells that co-express lmx1bb and [bxla are dI5 cells.
However, in contrast to previous reports in amniotes,
we also find that a substantial proportion of [mx1bb-ex-
pressing spinal cells (at least 38 %) are VOv neurons
(Fig. 1i; Table 2). This is the first time that /mx1bb ex-
pression has been described in this cell type in any



Hilinski et al. Neural Development (2016) 11:16

Table 7 Lmx1b regulates the glutamatergic phenotype of a
subset of VOv neurons

slc17a6 (glutamatergic) EGFP (VOv) co-labeled
48 h WT Imx1bb” WT Imx1bb” WT  Imx1bb”
Mean 155 1422 923 934 443 324
SEM 1.54 222 272 2.58 09 19
n 6 5 6 5 6 5
p value  <0.001 0.76 <0.001
DsRed (glutamatergic) EGFP (VOv) co-labeled
7 dpf WT Imx1bb” WT Imx1bb” WT  Imx1bb”
Mean 1326 105.3 100.1 913 429 218
SEM 55 52 14 2.1 49 2.7
n 9 12 9 12 9 12
p value  <0.005 0.002 <0.001

Mean number of cells expressing sic17a6, EGFP or both in the spinal cord
region adjacent to somites 6-10 in 48 h embryos and the mean number of
cells expressing DsRed, EGFP or both in the spinal cord region adjacent to
somites 6-10 in 7 dpf embryos. SEM is the standard error of the mean. n is
the number of embryos analyzed for each data set. p value is from a student’s
paired t-test comparing WT embryos and Imx7bb homozygous mutants.
Statistically significant values are indicated in bold

animal. However, a small subset of Lmx1b cells are lo-
cated in the ventral spinal cord of E12.5 mice [32] in a
region similar to where Evxl, a VOv marker, is expressed
[12]. Therefore, it is possible that some mouse VOv neu-
rons may also express Lmx1b. Interestingly, at the stages
that we examined, only a subset of zebrafish VOv neu-
rons express Imx1bb (Fig. 1i; Table 2). This suggests that
Imx1bb may be expressed by a specific subset of VOv in-
terneurons. Interestingly, Satou and colleagues have
shown that VOv neurons can be divided into three sub-
sets based on their morphology [31]. Alternatively, it is
possible that all VOv cells express [mx1bb, but either
only transiently, or only at later stages of their develop-
ment, resulting in only a subset being co-labeled at any
particular time.

While we were unable to successfully perform double-
labeling experiments with lmx1ba and Imx1bb, due to very
weak staining with our /mx1ba RNA probes, our results
suggest that these two genes are expressed by the same
spinal cord neurons. Firstly, their spinal cord expression
patterns are very similar, although lmxiba is expressed
later than /mx1bb in most spinal cord domains (Figs. 1d-g,
2a-f and 8a and c). Secondly, /mxlba single mutant,
Imx1bb single mutant, lmx1ba;lmx1bb double mutant and
Imx1ba;lmx1bb double heterozygous embryos all have the
exact same spinal cord phenotype (the same reduction in
the number of glutamatergic neurons) suggesting that the
two ohnologs have redundant functions in the spinal cord,
and must, therefore, be co-expressed in at least some cells
(Fig. 4; Table 5). Interestingly, other studies using zebrafish
to examine [mx1ba and Imx1bb functions in the isthmus,
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diencephalon and eye have also found that these two
genes have overlapping expression and function redun-
dantly in those tissues [21, 23, 24]. Finally, in evxLevx2
double mutants the number of cells expressing either
Imx1ba or Imx1bb is reduced (Fig. 8; Table 8). Given that
evxl and evx2 are only expressed in VOv neurons in the
spinal cord, this strongly suggests that both of the lmx1b
ohnologs are expressed in VOv cells.

In this paper, we demonstrate that Lmx1b transcrip-
tion factors are required in zebrafish for correct num-
bers of spinal glutamatergic cells at later stages of
development. At 27 h there is no change in the number
of spinal glutamatergic cells in the spinal cord in /mx1bb
mutants, but by 36 h there is a reduction in the number
of glutamatergic cells and this reduction becomes more
severe by 48 h. We also demonstrate that this phenotype
persists until at least 7 days. In contrast, /mx1b-express-
ing dI5 and VOv cells are still present in normal numbers
at 48 h and we observe no increase in cell death at either
36 h or 48 h. These results suggest that the reduction of
glutamatergic cells is not a consequence of cell death,
changes in cell proliferation or global changes in cell
fate.

Prior to this study, LmxIb had been implicated in
correct neuronal migration, connectivity and viability
[18, 19, 25, 62, 88, 89]. However, while data from previ-
ous studies suggested that LmxIb may have a role in
the development of a subset of spinal cord glutamater-
gic cells (e.g. [8, 9, 18, 62]), a precise function in gluta-
matergic fate specification or maintenance had not
been identified. Interestingly, when LmxI1b was condi-
tionally ablated specifically in the mouse spinal cord, at
E18.5 there was also a reduction in the number of glu-
tamatergic neurons and no change in the number of in-
hibitory neurons, which is similar to our results in
zebrafish (Figs. 3 and 4) [18]. However, the authors of
this study attributed this reduction in glutamatergic
neurons to cell death because they also observed a re-
duction in the total number of cells in the dorsal horn
and an increase in caspase-3-positive neurons. Despite
this, the authors speculated that Lmx1b may function
in the maintenance of the neurotransmitter phenotype
prior to the death of these cells [18].

Our results differ from this mouse study because we
do not see any evidence of an increase in cell death in
the spinal cord of zebrafish /mx1bb mutants, at least be-
tween 36 and 72 h, even though we see statistically sig-
nificant reductions in spinal glutamatergic cells at these
stages. It is possible that the slight reduction in EGFP-
labeled VOv cells that we see at 7 dpf might be due to
cell death, but if this is the case this is likely to be a
second, later phenotype as it occurs much later than the
reduction in glutamatergic cells and affects a much
smaller number of cells than the glutamatergic
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significant (p < 0.05) comparisons are indicated with square brackets and stars. One experiment was conducted for (a and b). Two independent
experiments were conducted for (c and d) and cell count results were similar in each replicate. Data presented here (e) are average values for 5-12
embryos. Precise number of embryos counted and p values are provided in Table 8. f. Proposed mechanism for how the excitatory (glutamatergic)
neurotransmitter phenotype of at least a subset of VOv neurons is specified and/or maintained. We previously demonstrated that Evx1 & Evx2 specifies
the excitatory (glutamatergic) neurotransmitter phenotype and represses inhibitory (glycinergic) phenotypes in VOv cells [11]. The current
study demonstrates that Evx1 & Evx2 are also required for Imx7ba and Imx1bb expression. Furthermore, we show that Lmx1bb is required at
later developmental stages either to maintain the excitatory (glutamatergic) neurotransmitter phenotype for at least a subset of VOv neurons
or to specify the glutamatergic phenotype of a later-forming subset of VOv cells. Scale bar = 50 um

Table 8 Evx1 and Evx2 are required for Imxi1b expression

Marker 30 h WT evx1”evx2”
Imx1ba Mean 86 48

SEM 081 1.1

n 5 6

p value 0.029
Imx1bb Mean 359 19.7

SEM 64 53

n 12 6

p value <0.001

Mean number of Imx1ba or Imx1bb-expressing cells in the spinal cord region
adjacent to somites 6-10 in 30 h embryos. SEM is the standard error of the
mean. n is the number of embryos analyzed for each data set. p value is from
a student’s paired t-test comparing WT and Imx1bb mutant embryos. Statistically
significant p values are indicated in bold

phenotype. Future studies could perform cell death as-
says to test whether VOv cells die at later stages, but this
would not be trivial as this death could occur any time
between 72 h and 7 dpf and the number of cells lost at 7
dpf is very small.

The lack of cell death in zebrafish [mx1bb mutants at
earlier developmental stages where we see neurotrans-
mitter phenotypes might seem surprising given the
evidence that mis-programmed cells die in the mam-
malian spinal cord [18, 88, 89]. This result could pos-
sibly be the consequence of different developmental
strategies being utilized in mouse and zebrafish spinal
cords. In zebrafish embryos, with the exception of
Rohon Beard cells, there is very little apoptosis in the
spinal cord during development [90], compared to sub-
stantially more programed cell death in the mouse
spinal cord [91-93]. It is possible that the fast develop-
ment and/or smaller size of zebrafish embryos makes
it more difficult to utilize a strategy of creating and
pruning excess neurons. In this case, mice might be
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better equipped to eliminate neurons with incorrect
functional characteristics than zebrafish. Consistent
with this hypothesis, in an earlier study when we re-
moved Pax2 and Pax8 function in zebrafish, several
subsets of spinal interneurons lost their inhibitory
neurotransmitter phenotypes but they were still
present in normal numbers and had normal morpholo-
gies and axonal trajectories [7], suggesting that their
viability was not affected. Similarly, in zebrafish
evxl;evx2 double mutants, VOv spinal neurons switch
their neurotransmitter phenotypes from excitatory to
inhibitory but they retain normal axon projections
until at least 48 h, again suggesting that their viability
is not affected [11].

Regardless of the reason, we do not see any evi-
dence of increased cell death in the spinal cord of
zebrafish [mx1bb mutants between 36 and 72 h. We
also do not see any change in the numbers of VOv or
dI5 cells, suggesting that the cells that usually express
Imx1bb still form and are present in normal numbers
(Fig. 6; Table 4). However, in contrast and as dis-
cussed above, our data suggest that Lmx1b transcrip-
tion factors are required either to maintain the
glutamatergic neurotransmitter phenotype of a subset
of excitatory spinal neurons or to specify the gluta-
matergic phenotype of a later-forming subset of spinal
neurons (Figs. 3 and 4). If Lmxlbb is required to
maintain a subset of glutamatergic fates in the spinal
cord, this would be consistent with Lmx1b function
in some other regions of the CNS, specifically the
mouse raphe nucleus and trigeminal brainstem com-
plex, where Lmx1b is required to maintain specific
neurotransmitter phenotypes [19, 25, 94, 95]. However, in
the case of the raphe nucleus it is a serotonergic pheno-
type rather than a glutamatergic phenotype that Lmx1b
maintains.

As ImxIbb has not previously been shown to be
expressed by VOv neurons, we were particularly inter-
ested in testing whether Imx1bb is specifically required
for the glutamatergic phenotypes of these cells. We
found that there is a statistically significant reduction in
the number of glutamatergic VOv cells in /mx1bb mu-
tants at both 48 h and 7dpf (Fig. 7; Table 7). Despite the
fact that previous reports have shown that all VOv cells
are excitatory [11, 31], not all WT VOv neurons were
co-labeled with slc17a6 or Tg(slc17a6b(vglut2a):loxP-
DsRed-loxP-GFP)"'* in these experiments. This is prob-
ably because, as discussed above, slc17a6 is a weak probe
in double labelling experiments and the Tg(slc17a6b(vglu-
t2a):loxP-DsRed-loxP-GFP)"*'* transgenic line only labels
a subset of glutamatergic spinal cord cells in our hands. In
contrast, we observed the same number of evx-expressing
cells by in situ hybridization as EGFP-positive cells in
Tg(evx:EGFP)*™" embryos (Fig. 6¢-g; Table 4), suggesting
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that this transgenic line labels all VOv cells, even at later
stages of development, as has previously been shown for
earlier stages [11].

In addition to showing that Imx1bb is expressed by
VOv cells, our results also demonstrate that [mxlba
and lmx1bb expression in these cells requires Evxl
and Evx2 activity. When we examine [mxlba and
Imx1bb expression in evxl;evx2 double mutant em-
bryos we see a statistically significant reduction in the
number of Ilmxlba and I[mxlbb-expressing neurons
(Fig. 8a-e; Table 8). Our previous work demonstrated
that Evxl and Evx2 function partially redundantly to
specify the glutamatergic neurotransmitter phenotype
of VOv neurons [11]. Combined with these earlier
results, the data in this paper start to elucidate a
pathway of neurotransmitter fate specification and
maintenance for VOv cells, with Evx1l and Evx2 speci-
fying the glutamatergic neurotransmitter phenotype as
well as [mxlba and I[mxIbb expression. The ImxIb
genes then function downstream of Evxl and Evx2,
either to maintain the glutamatergic neurotransmitter
phenotype of at least a subset of VOv neurons or to
specify the glutamatergic neurotransmitter phenotype
of a late-forming subset of VOv cells (Fig. 8f).

Interestingly, our results also show that correct
Lmx1b function requires three functional [mxIb al-
leles in zebrafish, but it does not seem to matter
which Imx1b alleles these are (Fig. 4). This suggests
that /mx1ba and Imx1bb are at least partially redun-
dant. Given that [mxlba and [mx1bb are ohnologs
that presumably arose in the teleost specific genome
duplication event [96, 97], this requirement for three
functional Imx1b alleles must have arisen in the tele-
ost lineage. Interestingly, in humans, just one mutant
allele of LmxIb causes the autosomal dominant dis-
order nail-patella syndrome (NPS), suggesting that
gene dosage is also important in mammals [98, 99].
Moreover, a quarter of NPS patients experience per-
ipheral neurological symptoms which may be the re-
sult of improper specification of spinal cord neurons
[18, 62, 100], suggesting that our results may have
direct relevance to this human disorder.

During these studies we also discovered that slc32a1,
previously believed to be expressed by all inhibitory neu-
rons, does not label all inhibitory spinal neurons at 48 h
in zebrafish [33, 68]. At 48 h slc32al expression is re-
stricted to a band of neurons in the middle of the
dorsal-ventral axis of the spinal cord (Fig. 3l), whereas
the GADs (markers of GABAergic cells) are also
expressed in more ventral regions at this stage (Fig. 3l
and 0). At 27 h slc32al seems to be expressed by all
inhibitory neurons, as previously reported [33, 68].
However, at 36 h slc32al expression starts to be re-
stricted to more dorsal inhibitory populations, although
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some ventral slc32al-expressing cells are still detected.
It is this sporadic ventral slc32al expression that likely
causes the larger variations in the number of slc32a1-ex-
pressing cells detected at 36 h when compared to 27 h
and 48 h (Fig. 3j and k; Table 3).

Conclusions

In conclusion, we demonstrate that lmxilba and lmx1bb
are expressed by VOv and dI5 spinal interneurons. These
genes are required, partially redundantly, in a dose-
dependent manner, for the glutamatergic neurotrans-
mitter phenotype of at least a subset of these neurons
at later developmental stages. However, /mxIba and
Imx1bb are not required to repress (or specify) inhibi-
tory neurotransmitter phenotypes as there is no
statistically significant change in the number of in-
hibitory cells in either lmxlba or Ilmxlbb single or
double mutants. We also show that /mxIba and
Imx1bb require Evxl and Evx2 for their expression in
VOv neurons, suggesting that [mxlba and lmx1bb act
downstream of Evxl and Evx2 in specifying or main-
taining the glutamatergic neurotransmitter phenotype
of at least a subset of VOv neurons. Taken together,
our results provide new and powerful insights into
the mechanisms required for excitatory neurotrans-
mitter phenotypes within the spinal cord.
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