259 research outputs found
Prolonged Exposure to a Mer Ligand in Leukemia: Gas6 Favors Expression of a Partial Mer Glycoform and Reveals a Novel Role for Mer in the Nucleus
Mer tyrosine kinase is ectopically expressed in acute lymphoblastic leukemia and associated with enhanced chemoresistance and disease progression. While such effects are generally ascribed to increased engagement of oncogenic pathways downstream of Mer stimulation by its ligand, Gas6, Mer has not been characterized beyond the scope of its signaling activity. The present study explores Mer behavior following prolonged exposure to Gas6, a context similar to the Gas6-enriched microenvironment of the bone marrow, where a steady supply of ligand facilitates continuous engagement of Mer and likely sustains the presence of leukemic cells. Long-term Gas6 exposure induced production of a partially N-glycosylated form of Mer from newly synthesized stores of protein. Preferential expression of the partial Mer glycoform was associated with diminished levels of Mer on the cell surface and altered Mer localization within the nuclear-soluble and chromatin-bound fractions. The presence of Mer in the nucleus is a novel finding for this receptor, and the glycoform-specific preferences observed in each nuclear compartment suggest that glycosylation may influence Mer function within particular subcellular locales. Previous studies have established Mer as an attractive cancer biologic target, and understanding the complexity of its activity has important implications for potential strategies of Mer inhibition in leukemia therapy. Our results identify several novel features of Mer that expand the breadth of its functions and impact the development of therapeutic modalities designed to target Mer
Activation of HER3 Interferes with Antitumor Effects of Axl Receptor Tyrosine Kinase Inhibitors: Suggestion of Combination Therapy.
The Axl receptor tyrosine kinase (RTK) has been established as a strong candidate for targeted therapy of cancer. However, the benefits of targeted therapies are limited due to acquired resistance and activation of alternative RTKs. Therefore, we asked if cancer cells are able to overcome targeted Axl therapies. Here, we demonstrate that inhibition of Axl by short interfering RNA or the tyrosine kinase inhibitor (TKI) BMS777607 induces the expression of human epidermal growth factor receptor 3 (HER3) and the neuregulin 1(NRG1)-dependent phosphorylation of HER3 in MDA-MB231 and Ovcar8 cells. Moreover, analysis of 20 Axl-expressing cancer cell lines of different tissue origin indicates a low basal phosphorylation of RAC-alpha serine/threonine-protein kinase (AKT) as a general requirement for HER3 activation on Axl inhibition. Consequently, phosphorylation of AKT arises as an independent biomarker for Axl treatment. Additionally, we introduce phosphorylation of HER3 as an independent pharmacodynamic biomarker for monitoring of anti-Axl therapy response. Inhibition of cell viability by BMS777607 could be rescued by NRG1-dependent activation of HER3, suggesting an escape mechanism by tumor microenvironment. The Axl-TKI MPCD84111 simultaneously blocked Axl and HER2/3 signaling and thereby prohibited HER3 feedback activation. Furthermore, dual inhibition of Axl and HER2/3 using BMS777607 and lapatinib led to a significant inhibition of cell viability in Axl-expressing MDA-MB231 and Ovcar8 cells. Therefore, we conclude that, in patient cohorts with expression of Axl and low basal activity of AKT, a combined inhibition of Axl and HER2/3 kinase would be beneficial to overcome acquired resistance to Axl-targeted therapies
Accurate and robust feature-based homography estimation using HALF-SIFT and feature localization error weighting
MerTK regulates thymic selection of autoreactive T cells
T cell-mediated autoimmune diseases such as type 1 diabetes (T1D) are believed to be the result in part of inefficient negative selection of self-specific thymocytes. However, the events regulating thymic negative selection are not fully understood. In the current study, we demonstrate that nonobese diabetic (NOD) mice lacking expression of the Mer tyrosine kinase (MerTK) have reduced inflammation of the pancreatic islets and fail to develop diabetes. Furthermore, NOD mice deficient in MerTK expression (Mer−/−) exhibit a reduced frequency of β cell-specific T cells independent of immunoregulatory effectors. The establishment of bone marrow chimeric mice demonstrated that the block in β cell autoimmunity required hematopoietic-derived cells lacking MerTK expression. Notably, fetal thymic organ cultures and self-peptide administration showed increased thymic negative selection in Mer−/− mice. Finally, thymic dendritic cells (DC) prepared from Mer−/− mice exhibited an increased capacity to induce thymocyte apoptosis in a peptide-specific manner in vitro. These findings provide evidence for a unique mechanism involving MerTK-mediated regulation of thymocyte negative selection and thymic DC, and suggest a role for MerTK in contributing to β cell autoimmunity
Vanadium Aminophenolate Complexes and Their Catalytic Activity in Aerobic and H2O2‐Mediated Oxidation Reactions
Vanadium compounds supported by tetradentate amino‐bis(phenolate) ligands, [VO(OMe)(O2NOBuMeMeth)] (1), [VO(OMe)(ON2OBuMe)] (2), [VO(OMe)(O2NNBuBuPy)] (3), and [VO(OMe)(O2NOBuBuFurf)] (4) [where (O2NOBuMeMeth) = MeOCH2CH2N(CH2ArOH)2, Ar = 3,5‐C6H2‐Me, tBu; (ON2OBuMe) = HOArCH2NMeCH2CH2NMeCH2ArOH, Ar = 3,5‐C6H2‐Me, tBu; (O2NNBuBuPy) = C5H4NCH2N(CH2ArOH)2, Ar = 3,5‐C6H2‐tBu2; (O2NOBuBuFurf) = C4H3OCH2N(CH2ArOH)2, Ar = 3,5‐C6H2‐tBu2] were synthesized and characterized by NMR spectroscopy, MALDI‐TOF mass spectrometry and UV/Vis data. The catalytic activity of 1–4 as homogeneous catalysts in the aerobic oxidation of 4‐methoxybenzyl alcohol and 1,2‐diphenyl‐2‐methoxyethanol was explored. 1 and 2 showed moderately superior activity compared with 3 and 4, which might be due to increased stability of these complexes. 1–4 showed limited reactivity in H2O2‐mediated oxidation of diphenyl ether and benzyl phenyl ether
Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in
The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement
Poly(hydroxy acids) derived from the self-condensation of hydroxy acids: from polymerization to end-of-life options
[EN] Poly(hydroxy acids) have been gaining increasing attention in the search for novel sustainable materials to replace petrochemical polymers in packaging applications. Poly(hydroxy acids) are polyesters that are obtained using hydroxy acids as the starting materials, which are derived from renewable resources and biowaste. These biopolymers have attracted a lot of attention since some of them will be in the near future competitive in price to polyolefins, show excellent mechanical and barrier properties, and can be potentially recycled by physical and chemical routes. Most of the current poly(hydroxy acids) are mainly prepared by ring-opening polymerization (ROP) of cyclic monomers derived from hydroxy acids. However, their direct polymerization has received much less attention, while one of the advantages of hydroxy acids resides in the presence of an electrophile and a nucleophile in a single molecule that makes them ideal A-B type monomers for self-condensation. This review focuses on the preparation of poly(hydroxy acids) by the self-condensation polymerization of hydroxy acids. Moreover, their end-of-life options are also evaluated considering not only their biodegradability but also their potential to be chemically recycledThe authors thank the European Commission (EC) for financial support through the project SUSPOL-EJDH2020-ITN-2014-642671 and the Spanish Ministry of Science and Innovation (MICI) through the projects RTI2018-097249-B-C21, MAT2017-83373-R, and MAT-2016-78527-P. S. Torres-Giner also acknowledges MICI for his Juan de la Cierva-Incorporacion contract (IJCI-2016-29675) and the financial support received during his stay at the Institute for Polymer Materials (POLYMAT)Gabirondo, E.; Sangroniz, A.; Etxeberria, A.; Torres-Giner, S.; Sardon, H. (2020). Poly(hydroxy acids) derived from the self-condensation of hydroxy acids: from polymerization to end-of-life options. Polymer Chemistry. 11(30):4861-4874. https://doi.org/10.1039/D0PY00088DS48614874113
The Protein Network Surrounding the Human Telomere Repeat Binding Factors TRF1, TRF2, and POT1
Telomere integrity (including telomere length and capping) is critical in overall genomic stability. Telomere repeat binding factors and their associated proteins play vital roles in telomere length regulation and end protection. In this study, we explore the protein network surrounding telomere repeat binding factors, TRF1, TRF2, and POT1 using dual-tag affinity purification in combination with multidimensional protein identification technology liquid chromatography - tandem mass spectrometry (MudPIT LC-MS/MS). After control subtraction and data filtering, we found that TRF2 and POT1 co-purified all six members of the telomere protein complex, while TRF1 identified five of six components at frequencies that lend evidence towards the currently accepted telomere architecture. Many of the known TRF1 or TRF2 interacting proteins were also identified. Moreover, putative associating partners identified for each of the three core components fell into functional categories such as DNA damage repair, ubiquitination, chromosome cohesion, chromatin modification/remodeling, DNA replication, cell cycle and transcription regulation, nucleotide metabolism, RNA processing, and nuclear transport. These putative protein-protein associations may participate in different biological processes at telomeres or, intriguingly, outside telomeres
- …