1,045 research outputs found

    Susceptibility of salt marshes to nutrient enrichment and predator removal

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 17, Suppl. (2007): S42–S63, doi:10.1890/06-0452.1.The sustainability of coastal ecosystems in the face of widespread environmental change is an issue of pressing concern throughout the world (Emeis et al. 2001). Coastal ecosystems form a dynamic interface between terrestrial and oceanic systems and are one of the most productive ecosystems in the world. Coastal systems probably serve more human uses than any other ecosystem and they have always been valued for their rich bounty of fish and shellfish. Coastal areas are also the sites of the nation’s and the world’s most intense commercial activity and population growth; worldwide, approximately 75% of the human population now lives in coastal regions (Emeis et al. 2001). Over the past three decades nutrient enrichment of coastal and estuarine waters has become the premier issue for both scientists and managers (National Research Council 2000). Our understanding of coastal eutrophication has been developed principally through monitoring of estuaries, with a focus on pelagic or subtidal habitats (National Research Council 2000, Cloern 2001). Because estuarine systems are usually nitrogen limited, NO3- is the most common nutrient responsible for cultural nutrient enrichment (Cloern 2001). Increased nitrogen delivery to pelagic habitats of estuaries produces the classic response of ecosystems to stress (altered primary producers and nutrient cycles and loss of secondary producer species and production; Nixon 1995, Rapport and Whitford 1999, Deegan et al. 2002). Salt marsh ecosystems have been thought of as not susceptible to nitrogen over-loading because early studies found added nitrogen increased marsh grass production (primarily Spartina spp., cordgrass) and concluded that salt marshes can adsorb excess nutrients in plants and salt marsh plant-derived organic matter as peat (Verhoeven et al. 2006). Detritus from Spartina is important in food webs (Deegan et al. 2000) and in creating peat that forms the physical structure of the marsh platform (Freidrichs and Perry 2001). However, the accumulation of peat and inputs of sediments and loss of peat through decomposition and sediment through erosion may be altered under high nutrient regimes and threaten the long-term stability of marsh systems. Nitrogen addition may lead to either net gain or loss of the marsh depending on the balance between increased marsh plant production and increased decomposition. Absolute change in marsh surface elevation is determined by marsh plant species composition, production and allocation to above- and belowground biomass, microbial decomposition, sedimentation, erosion and compaction (Friedrichs and Perry 2001). Levine et al. (1998) suggested that competitive dynamics among plants might be affected by nutrient enrichment, potentially altering relative abundance patterns favoring species with less belowground storage and thus lowering rates of peat formation. When combined with the observation that nutrient additions may also stimulate microbial respiration and decomposition (Morris and Bradley 1999), the net effect on the salt marsh under conditions of chronic nitrogen loading is a critical unknown. Although most research treats nutrient enrichment as a stand-alone stress, it never occurs in isolation from other perturbations. The effect of nutrient loading on species composition (both plants and animals) and the resultant structure and function of wetlands has been largely ignored when considering their ability to adsorb nutrients (Verhoeven et al. 2006). Recent studies suggest the response of estuaries to stress may depend on animal species composition (Silliman et al. 2005). Animal species composition may alter the balance between marsh gain and loss as animals may increase or decrease primary production, decomposition or N recycling (Pennings and Bertness 2001). Failure to understand interactions between nutrient loading and change in species composition may lead to underestimating the impacts of these stresses. The 'bottom up or top down' theory originated from the observation that nutrient availability (bottom up)sets the quantity of primary productivity, while other studies have shown that species composition (top down), particularly of top consumers, has a marked and cascading effect on ecosystems, including controlling species composition and nutrient cycling (Matson and Price 1992, Pace et al. 1999). Most examples of trophic cascades are in aquatic ecosystems with fairly simple, algal grazing pelagic food webs (Strong 1992). The rarity of trophic cascades in terrestrial systems has been attributed to the importance of detrital food webs (Polis 1999). Detritus-based aquatic ecosystems, such as salt marshes, bogs, and swamps, have classically been considered bottom-up or physically controlled ecosystems. Recent experiments, however, suggest that salt marshes may exhibit top-down control at several trophic levels (Silliman and Zeiman. 2001, Silliman and Bertness 2002, Quiñones-Rivera and Fleeger 2005). One abundant, ubiquitous predator, a small (<10 cm total length) killifish (Fundulus heteroclitus, mummichog) has been suggested to control benthic algal through a trophic cascade because they prey on the invertebrates that graze on the benthic algae (Kneib 1997, Sarda et al. 1998). In late summer, killifish are capable of consuming 3-10 times the creek meiofauna production and meiofauna in the absence of predators appear capable of grazing over 60% of the microalgal community per day (Carman et al. 1997). Strong top-down control by grazers is considered a moderating influence on the negative effects of elevated nutrients on algae (Worm et al. 2000). Small-scale nutrient additions and predator community exclusion experiments have demonstrated bottom-up and top-down control of macroinfauna in mudflats associated with salt marsh creeks (Posey et al. 1999, Posey et al. 2002). Together, these observations suggest mummichogs are at the top of a trophic cascade that controls benthic algae (Sarda et al. 1998). Mummichogs are also omnivorous and ingest algae, bulk detritus and the attached microbial community (D’Avanzo and Valiela 1990). As a result, marsh decomposition rates may be limited by top-down controls through trophic pathways or by release from competition with algae for nutrients. Whole-ecosystem experiments have shown that responses to stress are often not predictable from studies of the individual components (Schindler 1998). Developing the information needed to predict the interacting impacts of nutrient loading and species composition change requires experiments with realistic alterations carried out at scales of space and time that include the complexities of real ecosystems. Whole ecosystem manipulation experiments have been used effectively in other ecosystems (Bormann and Likens 1979, Carpenter et al. 1995), but they are rare in coastal research. Experiments in salt marshes have traditionally been less than a few m2. Our understanding of the response of salt marsh plants to nutrient enrichment is from small ( 1000 g N m-2 y-1) are sprinkled on the marsh surface at low tide. Dry fertilizer additions were usually made every two weeks or monthly and the duration of elevated nutrient levels after these additions was usually not determined. Tidal water is the primary vector for N delivery to coastal marshes, suggesting that dry fertilizer addition to the marsh surface may not be the best basis for determining if Spartina production responds to nutrient enrichment of tidal waters. Similarly, our understanding of top-down controls in salt marshes also relies on small (1 - 4 m2) exclusion experiments that use cages to isolate communities from top consumers. While the design of these cage experiments has improved, there are some remaining drawbacks. For example, it is impossible to selectively exclude single species using cages, and recruitment or size-selective movement into or out of the cages may obscure interpretations. In addition, while these small-scale experiments provide insight into controls on isolated ecosystem processes, they do not allow for interaction among different parts of the ecosystem which may buffer or alter the impacts and are not appropriate for determining the effects of populations of larger more motile animals on whole-ecosystems or the effects of ecosystem changes on populations. For example, interactions may be caused when a motile species alters its distribution among the habitats available to it because of an experimental treatment. Small-scale experiments generally do not allow such events to happen. Complex feedbacks among physical and biological processes can alter accumulation rates and affect marsh elevation relative to sea level rise making extrapolation of small plot level experiments to whole marsh ecosystems problematic. We are conducting an ecosystem-scale, multi-year field experiment including both nutrient and biotic manipulations to coastal salt marsh ecosystems. We are testing, for the first time at the ecosystem level, the hypothesis that nutrient enrichment and species composition change have interactive effects across multiple levels of biological organization and a range of biogeochemical processes. We altered whole salt marsh creek watersheds (~60,000 m2 of saltmarsh) by addition of nutrients (15x ambient) in flooding waters and by a 60% reduction of a key fish species, the mummichog. Small marsh creek watersheds provide an ideal experimental setting because they have the spatial complexity, species composition and processes characteristic of the larger salt marsh ecosystem, which are often hundreds of thousands of m2. Manipulating entire salt marsh creeksheds allowed us to examine effects on large motile animals and the interactive effects of motile species changes on ecosystem processes without cage artifacts. Because our manipulations were done on whole-marsh ecosystems, we are able to evaluate the integrated and interactive effects on all habitats (e.g., water column, tidal creeks and marsh) and on populations. These experiments are similar in many respects to the small watershed experiments carried out in forested catchments. Our nutrient enrichment is novel compared to past studies in two important ways. We added nutrients (N and P) directly to the flooding tidal creek waters to mimic the way in which anthropogenic nutrients reach marsh ecosystems. All previous experimental salt marsh nutrient enrichment studies used a dose-response design with spatially uniform dry fertilizer loading on small plots (<10 m2). Nutrients carried in water will interact and reach parts of the ecosystem differently than dry fertilizer. Our enrichment method also creates a spatial gradient of nutrient loading across the landscape that is proportional to the frequency and depth of inundation in the marsh. Spatial gradients in loading within an ecosystem are typical in real world situations in many terrestrial and aquatic ecosystems. Because of our enrichment method, at any location in the ecosystem, nutrient load will be a function of the nutrient concentration in the water, the frequency and depth of tidal flooding and the reduction of nutrients from the flooding waters by other parts of the ecosystem. Uniform loading misses important aspects of the spatial complexity of ecosystem exposure and response. This work is organized around two questions that are central to understanding the long-term fate of coastal marshes: 1. Does chronic nutrient enrichment via flooding water increase primary production more than it stimulates microbial decomposition? 2. Do top-down controls change the response of the salt marsh ecosystem to nutrient enrichment? Here we present findings on the first 2 years of these experiments including 1) water chemistry, 2) standing stocks and species composition of benthic microalgae, 3) microbial production, 4) species composition and ecophysiology of macrophytes, 5) invertebrates, and 6) nekton. Because even highly eutrophic waters result in nutrient loading that is an order of magnitude less than most plot level experiments, we expected little stimulation of salt marsh vascular plant growth. However, moderate levels of nutrient enrichment in the water column were expected to increase benthic algal biomass and to stimulate bacterial activity and detrital decomposition throughout the ecosystem because of direct uptake of nitrogen from the water column and availability of more high quality organic matter from increased algal production. We predicted nutrient enrichment would increase invertebrate production because of an increase of high quality microalgal and microbial production at the base of the food web. Finally, we predicted that fish reduction would reduce predation on benthic invertebrates resulting in increased abundance of benthic invertebrates that would graze down the benthic algae.The National Science Foundation (Grant DEB 0213767, OCE 9726921, and OCE 0423565) supported this work. Additional funding was provided by the National Science Foundation postdoctoral fellowship in Microbial Biology (DBI-0400819), the NOAA Coastal Intern grant (NA04NOS4780182), the Office of Environmental Education of Louisiana, Middlebury College and Connecticut College

    Re-visioning ultrasound through women's accounts of pre-abortion care in England

    Get PDF
    Feminist scholarship has demonstrated the importance of sustained critical engagement with ultrasound visualizations of pregnant women’s bodies. In response to portrayals of these images as “objective” forms of knowledge about the fetus, it has drawn attention to the social practices through which the meanings of ultrasound are produced. This article makes a novel contribution to this project by addressing an empirical context that has been neglected in the existing feminist literature concerning ultrasound, namely, its use during pregnancies that women decide to terminate. Drawing on semi-structured interviews with women concerning their experiences of abortion in England, I explore how the meanings of having an ultrasound prior to terminating a pregnancy are discursively constructed. I argue that women’s accounts complicate dominant representations of ultrasound and that in so doing, they multiply the subject positions available to pregnant women

    Measuring Five Dimensions of Religiosity Across Adolescence

    Get PDF
    This paper theorizes and tests a latent variable model of adolescent religiosity in which five dimensions of religiosity are interrelated: religious beliefs, religious exclusivity, external religiosity, private practice, and religious salience. Research often theorizes overlapping and independent influences of single items or dimensions of religiosity on outcomes such as adolescent sexual behavior, but rarely operationalizes the dimensions in a measurement model accounting for their associations with each other and across time. We use longitudinal structural equation modeling (SEM) with latent variables to analyze data from two waves of the National Study of Youth and Religion. We test our hypothesized measurement model as compared to four alternate measurement models and find that our proposed model maintains superior fit. We then discuss the associations between the five dimensions of religiosity we measure and how these change over time. Our findings suggest how future research might better operationalize multiple dimensions of religiosity in studies of the influence of religion in adolescence

    Review of Pesticide Urinary Biomarker Measurements from Selected US EPA Children’s Observational Exposure Studies

    Get PDF
    Children are exposed to a wide variety of pesticides originating from both outdoor and indoor sources. Several studies were conducted or funded by the EPA over the past decade to investigate children’s exposure to organophosphate and pyrethroid pesticides and the factors that impact their exposures. Urinary metabolite concentration measurements from these studies are consolidated here to identify trends, spatial and temporal patterns, and areas where further research is required. Namely, concentrations of the metabolites of chlorpyrifos (3,5,6-trichloro-2-pyridinol or TCPy), diazinon (2-isopropyl-6-methyl-4-pyrimidinol or IMP), and permethrin (3-phenoxybenzoic acid or 3-PBA) are presented. Information on the kinetic parameters describing absorption and elimination in humans is also presented to aid in interpretation. Metabolite concentrations varied more dramatically across studies for 3-PBA and IMP than for TCPy, with TCPy concentrations about an order of magnitude higher than the 3-PBA concentrations. Temporal variability was high for all metabolites with urinary 3-PBA concentrations slightly more consistent over time than the TCPy concentrations. Urinary biomarker levels provided only limited evidence of applications. The observed relationships between urinary metabolite levels and estimates of pesticide intake may be affected by differences in the contribution of each exposure route to total intake, which may vary with exposure intensity and across individuals

    Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways

    Get PDF
    The transition from vegetative growth to reproduction is a major developmental event in plants. To maximise reproductive success, its timing is determined by complex interactions between environmental cues like the photoperiod, temperature and nutrient availability and internal genetic programs. While the photoperiod- and temperature- and gibberellic acid-signalling pathways have been subjected to extensive analysis, little is known about how nutrients regulate floral induction. This is partly because nutrient supply also has large effects on vegetative growth, making it difficult to distinguish primary and secondary influences on flowering. A growth system using glutamine supplementation was established to allow nitrate to be varied without a large effect on amino acid and protein levels, or the rate of growth. Under nitrate-limiting conditions, flowering was more rapid in neutral (12/12) or short (8/16) day conditions in C24, Col-0 and Laer. Low nitrate still accelerated flowering in late-flowering mutants impaired in the photoperiod, temperature, gibberellic acid and autonomous flowering pathways, in the fca co-2 ga1-3 triple mutant and in the ft-7 soc1-1 double mutant, showing that nitrate acts downstream of other known floral induction pathways. Several other abiotic stresses did not trigger flowering in fca co-2 ga1-3, suggesting that nitrate is not acting via general stress pathways. Low nitrate did not further accelerate flowering in long days (16/8) or in 35S::CO lines, and did override the late-flowering phenotype of 35S::FLC lines. We conclude that low nitrate induces flowering via a novel signalling pathway that acts downstream of, but interacts with, the known floral induction pathways

    A randomized, open-label, multicentre, phase 2/3 study to evaluate the safety and efficacy of lumiliximab in combination with fludarabine, cyclophosphamide and rituximab versus fludarabine, cyclophosphamide and rituximab alone in subjects with relapsed chronic lymphocytic leukaemia

    Get PDF

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV
    corecore