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INTRODUCTION 

The sustainability of coastal ecosystems in the face of widespread environmental 

change is an issue of pressing concern throughout the world (Emeis et al. 2001). Coastal 

ecosystems form a dynamic interface between terrestrial and oceanic systems and are one 

of the most productive ecosystems in the world. Coastal systems probably serve more 

human uses than any other ecosystem and they have always been valued for their rich 

bounty of fish and shellfish. Coastal areas are also the sites of the nation’s and the 

world’s most intense commercial activity and population growth; worldwide, 

approximately 75% of the human population now lives in coastal regions (Emeis et al. 

2001).  

Over the past three decades nutrient enrichment of coastal and estuarine waters has 

become the premier issue for both scientists and managers (National Research Council 

2000). Our understanding of coastal eutrophication has been developed principally 

through monitoring of estuaries, with a focus on pelagic or subtidal habitats (National 

Research Council 2000, Cloern 2001). Because estuarine systems are usually nitrogen 

limited, NO3
- is the most common nutrient responsible for cultural nutrient enrichment 

(Cloern 2001). Increased nitrogen delivery to pelagic habitats of estuaries produces the 

classic response of ecosystems to stress (altered primary producers and nutrient cycles 

and loss of secondary producer species and production; Nixon 1995, Rapport and 

Whitford 1999, Deegan et al. 2002). 

Salt marsh ecosystems have been thought of as not susceptible to nitrogen over-

loading because early studies found added nitrogen increased marsh grass production 

(primarily Spartina spp., cordgrass) and concluded that salt marshes can adsorb excess 

nutrients in plants and salt marsh plant-derived organic matter as peat (Verhoeven et al. 

2006). Detritus from Spartina is important in food webs (Deegan et al. 2000) and in 
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creating peat that forms the physical structure of the marsh platform (Freidrichs and Perry 

2001). However, the accumulation of peat and inputs of sediments and loss of peat 

through decomposition and sediment through erosion may be altered under high nutrient 

regimes and threaten the long-term stability of marsh systems. 

Nitrogen addition may lead to either net gain or loss of the marsh depending on the 

balance between increased marsh plant production and increased decomposition. 

Absolute change in marsh surface elevation is determined by marsh plant species 

composition, production and allocation to above- and belowground biomass, microbial 

decomposition, sedimentation, erosion and compaction (Friedrichs and Perry 2001). 

Levine et al. (1998) suggested that competitive dynamics among plants might be affected 

by nutrient enrichment, potentially altering relative abundance patterns favoring species 

with less belowground storage and thus lowering rates of peat formation. When 

combined with the observation that nutrient additions may also stimulate microbial 

respiration and decomposition (Morris and Bradley 1999), the net effect on the salt marsh 

under conditions of chronic nitrogen loading is a critical unknown. 

Although most research treats nutrient enrichment as a stand-alone stress, it never 

occurs in isolation from other perturbations. The effect of nutrient loading on species 

composition (both plants and animals) and the resultant structure and function of 

wetlands has been largely ignored when considering their ability to adsorb nutrients 

(Verhoeven et al. 2006). Recent studies suggest the response of estuaries to stress may 

depend on animal species composition (Silliman et al. 2005). Animal species 

composition may alter the balance between marsh gain and loss as animals may increase 

or decrease primary production, decomposition or N recycling (Pennings and Bertness 

2001).  

Failure to understand interactions between nutrient loading and change in species 

composition may lead to underestimating the impacts of these stresses. The 'bottom up or 

top down' theory originated from the observation that nutrient availability (bottom up) 
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sets the quantity of primary productivity, while other studies have shown that species 

composition (top down), particularly of top consumers, has a marked and cascading 

effect on ecosystems, including controlling species composition and nutrient cycling 

(Matson and Price 1992, Pace et al. 1999). Most examples of trophic cascades are in 

aquatic ecosystems with fairly simple, algal grazing pelagic food webs (Strong 1992). 

The rarity of trophic cascades in terrestrial systems has been attributed to the importance 

of detrital food webs (Polis 1999). Detritus-based aquatic ecosystems, such as salt 

marshes, bogs, and swamps, have classically been considered bottom-up or physically 

controlled ecosystems.  

Recent experiments, however, suggest that salt marshes may exhibit top-down 

control at several trophic levels (Silliman and Zeiman. 2001, Silliman and Bertness 2002, 

Quiñones-Rivera and Fleeger 2005). One abundant, ubiquitous predator, a small (<10 cm 

total length) killifish (Fundulus heteroclitus, mummichog) has been suggested to control 

benthic algal through a trophic cascade because they prey on the invertebrates that graze 

on the benthic algae (Kneib 1997, Sarda et al. 1998). In late summer, killifish are capable 

of consuming 3-10 times the creek meiofauna production and meiofauna in the absence 

of predators appear capable of grazing over 60% of the microalgal community per day 

(Carman et al. 1997). Strong top-down control by grazers is considered a moderating 

influence on the negative effects of elevated nutrients on algae (Worm et al. 2000). 

Small-scale nutrient additions and predator community exclusion experiments have 

demonstrated bottom-up and top-down control of macroinfauna in mudflats associated 

with salt marsh creeks (Posey et al. 1999, Posey et al. 2002). Together, these observations 

suggest mummichogs are at the top of a trophic cascade that controls benthic algae (Sarda 

et al. 1998).  

Mummichogs are also omnivorous and ingest algae, bulk detritus and the attached 

microbial community (D’Avanzo and Valiela 1990). As a result, marsh decomposition 
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rates may be limited by top-down controls through trophic pathways or by release from 

competition with algae for nutrients.  

Whole-ecosystem experiments have shown that responses to stress are often not 

predictable from studies of the individual components (Schindler 1998). Developing the 

information needed to predict the interacting impacts of nutrient loading and species 

composition change requires experiments with realistic alterations carried out at scales of 

space and time that include the complexities of real ecosystems. Whole ecosystem 

manipulation experiments have been used effectively in other ecosystems (Bormann and 

Likens 1979, Carpenter et al. 1995), but they are rare in coastal research. Experiments in 

salt marshes have traditionally been less than a few m2. Our understanding of the 

response of salt marsh plants to nutrient enrichment is from small (<10 m2), plot-level 

additions where uniform levels of dry inorganic fertilizer (20 to > 1000 g N m-2 y-1) are 

sprinkled on the marsh surface at low tide. Dry fertilizer additions were usually made 

every two weeks or monthly and the duration of elevated nutrient levels after these 

additions was usually not determined. Tidal water is the primary vector for N delivery to 

coastal marshes, suggesting that dry fertilizer addition to the marsh surface may not be 

the best basis for determining if Spartina production responds to nutrient enrichment of 

tidal waters. Similarly, our understanding of top-down controls in salt marshes also relies 

on small (1 - 4 m2) exclusion experiments that use cages to isolate communities from top 

consumers. While the design of these cage experiments has improved, there are some 

remaining drawbacks. For example, it is impossible to selectively exclude single species 

using cages, and recruitment or size-selective movement into or out of the cages may 

obscure interpretations. In addition, while these small-scale experiments provide insight 

into controls on isolated ecosystem processes, they do not allow for interaction among 

different parts of the ecosystem which may buffer or alter the impacts and are not 

appropriate for determining the effects of populations of larger more motile animals on 

whole-ecosystems or the effects of ecosystem changes on populations. For example, 
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interactions may be caused when a motile species alters its distribution among the 

habitats available to it because of an experimental treatment. Small-scale experiments 

generally do not allow such events to happen. Complex feedbacks among physical and 

biological processes can alter accumulation rates and affect marsh elevation relative to 

sea level rise making extrapolation of small plot level experiments to whole marsh 

ecosystems problematic. 

We are conducting an ecosystem-scale, multi-year field experiment including both 

nutrient and biotic manipulations to coastal salt marsh ecosystems. We are testing, for the 

first time at the ecosystem level, the hypothesis that nutrient enrichment and species 

composition change have interactive effects across multiple levels of biological 

organization and a range of biogeochemical processes. We altered whole salt marsh creek 

watersheds (~60,000 m2 of saltmarsh) by addition of nutrients (15x ambient) in flooding 

waters and by a 60% reduction of a key fish species, the mummichog. Small marsh creek 

watersheds provide an ideal experimental setting because they have the spatial 

complexity, species composition and processes characteristic of the larger salt marsh 

ecosystem, which are often hundreds of thousands of m2. Manipulating entire salt marsh 

creeksheds allowed us to examine effects on large motile animals and the interactive 

effects of motile species changes on ecosystem processes without cage artifacts. Because 

our manipulations were done on whole-marsh ecosystems, we are able to evaluate the 

integrated and interactive effects on all habitats (e.g., water column, tidal creeks and 

marsh) and on populations. These experiments are similar in many respects to the small 

watershed experiments carried out in forested catchments.  

Our nutrient enrichment is novel compared to past studies in two important ways. 

We added nutrients (N and P) directly to the flooding tidal creek waters to mimic the way 

in which anthropogenic nutrients reach marsh ecosystems. All previous experimental salt 

marsh nutrient enrichment studies used a dose-response design with spatially uniform dry 

fertilizer loading on small plots (<10 m2). Nutrients carried in water will interact and 

6 



Deegan et al.   Saltmarsh response to multiple stressors 

reach parts of the ecosystem differently than dry fertilizer. Our enrichment method also 

creates a spatial gradient of nutrient loading across the landscape that is proportional to 

the frequency and depth of inundation in the marsh. Spatial gradients in loading within an 

ecosystem are typical in real world situations in many terrestrial and aquatic ecosystems. 

Because of our enrichment method, at any location in the ecosystem, nutrient load will be 

a function of the nutrient concentration in the water, the frequency and depth of tidal 

flooding and the reduction of nutrients from the flooding waters by other parts of the 

ecosystem. Uniform loading misses important aspects of the spatial complexity of 

ecosystem exposure and response. 

This work is organized around two questions that are central to understanding the 

long-term fate of coastal marshes:  

1. Does chronic nutrient enrichment via flooding water increase primary production 

more than it stimulates microbial decomposition?  

2. Do top-down controls change the response of the salt marsh ecosystem to nutrient 

enrichment?  

Here we present findings on the first 2 years of these experiments including 1) water 

chemistry, 2) standing stocks and species composition of benthic microalgae, 3) 

microbial production, 4) species composition and ecophysiology of macrophytes, 5) 

invertebrates, and 6) nekton. Because even highly eutrophic waters result in nutrient 

loading that is an order of magnitude less than most plot level experiments, we expected 

little stimulation of salt marsh vascular plant growth. However, moderate levels of 

nutrient enrichment in the water column were expected to increase benthic algal biomass 

and to stimulate bacterial activity and detrital decomposition throughout the ecosystem 

because of direct uptake of nitrogen from the water column and availability of more high 

quality organic matter from increased algal production. We predicted nutrient enrichment 

would increase invertebrate production because of an increase of high quality microalgal 

and microbial production at the base of the food web. Finally, we predicted that fish 
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reduction would reduce predation on benthic invertebrates resulting in increased 

abundance of benthic invertebrates that would graze down the benthic algae.  

SITE DESCRIPTION 

The Plum Island Sound estuary in New England where we conducted our 

experiments is a classic salt marsh estuary that is currently unaffected by nutrient loading 

(Fig. 1). Tall Spartina alterniflora (~200 cm in height; smooth cordgrass) is found in pure 

stands in low marsh and along creek banks that receive daily tidal inundation, while 

Spartina patens (20 – 60 cm in height; saltmeadow cordgrass) is most abundant in higher 

elevation areas that are well-drained and flood less frequently. S. alterniflora also occurs 

in a short form (20 – 60 cm in height) in the high marsh, often in pure stands in areas that 

are poorly drained. About 80% of the total marsh area is high marsh that floods on spring 

tides. Mean tide is 2.6 m; mean spring tides are 3 m. During a typical growing season, S. 

alterniflora in Plum Island is under water about 35% of the time, while S. patens and 

short form S. alterniflora are inundated about 12% of the time. As is typical of most New 

England marshes, historically the marsh platform was ditched for salt marsh haying and 

mosquito control. Ditch edges show the same vegetation zonation as creek banks. 

Currently, the all marshes are periodically sprayed with BTI for mosquito control.  

 Because characteristics of tidal marsh systems vary along a fresh to salt water 

gradient, we anticipated that the experimental areas might have to be paired to account 

for differences associated with position in the estuary. After initial exploratory work, we 

chose 4 marsh creek systems (Sweeney, West, Clubhead and Nelson) with similar 

geomorphology along the Rowley River in the central portion of Plum Island Sound. Our 

experimental areas were at the landward end of the creeks where each creek has 2 

roughly equal-sized branches (700 linear m of branch creek channel and 60,000 m2 of 

marsh per treatment). Prior to experimental manipulation (1998 – 2002) we collected 

baseline temperature, salinity, nutrient and benthic microalgae characteristics on each 

creek system (4 creeks, 4 years, approximately 8 times per year). Additional baseline data 
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on total suspended sediments, marsh plant species composition and distribution was 

collected in 2003.  

 The four marsh creek watersheds were very similar, but differences in salinity and 

vascular plant community composition supported pairing the two sets of experimental 

and reference creeks. Water column temperature, nutrients (NO3
-, NH4

+, PO4
3-), total 

suspended sediments and phytoplankton did not differ among the four creeks, or in 

branches within creeks (p>0.05 for all constituents except ammonium; Appendix A), 

however water column parameters for all creeks were different from Plum Island Sound 

water (Table 1). Creeks had warmer temperatures, lower salinities, higher nutrients, and 

higher phytoplankton biomass than the Sound. Sweeney and West are located further 

upstream along the tidal Rowley River, closer to sources of freshwater, and had slightly 

lower salinities than Clubhead and Nelson.  

Marsh vegetation followed the classic distribution of salt marsh plant 

communities: tall Spartina alterniflora was found along the creek banks in a band that 

varied in width from 1 – 3 m; short S. alterniflora, S. patens and Distichlis spicata 

(saltgrass) were found on the high marsh platform. Similarity analysis of the plant 

community (ANOSIM, Primer-E Ltd., Plymouth, UK) found no difference between 

Sweeney and West (P = 0.195) and between Clubhead and Nelson (P = 0.152). Analysis 

of all other creek pairings found that the plant communities were significantly different 

(all other P < 0.004). Total cover of tall S. alterniflora and of high marsh S. patens did 

not differ among creeks. Sweeney and West had less short S. alterniflora than did 

Clubhead and Nelson, and much higher cover of D. spicata. Atriplex patula (spear 

saltbush) contributed little to total cover and had higher cover in Sweeney and West 

compared to Clubhead and Nelson (data not shown). Sweeney and West also had 

consistently less plant litter and standing dead than did Clubhead and Nelson (data not 

shown). We also mapped the boundaries of individual plant communities using high 

precision GPS (± 2 cm horizontal; maps not shown) to provide a baseline from which to 
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determine long-term shifts in plant community boundaries.  

Baseline benthic microalgal biomass differed among habitats (Table 1), and was 

highest in the intertidal S. alterniflora habitat (220 mg chl a/m2), intermediate in 

intertidal mudflat habitat (100 mg chl a/m2) and lowest in high marsh S. patens (60 �g 

chl a/m2). West had higher mudflat and S. alterniflora habitat microalgae biomass 

compared to Sweeney, while Clubhead and Nelson were very similar to each other. Algal 

biomass in S. patens was highest in Nelson and lowest in Sweeney.  

Creek Pairings were made on the basis of plant community structure and position 

in the estuary. Creek Pair 1 was Sweeney and West. This pair was closest to the 

freshwater end of the estuary, had slightly lower salinity and very similar marsh plant 

communities. Creek Pair 2 was Clubhead and Nelson. This pair was more seaward, with 

higher salinities and marsh plant communities similar to each other and different than 

Creek Pair 1.  

EXPERIMENTAL DESIGN 

We manipulated the marsh ecosystem in two ways: 1) Nutrients were added to one 

creek of each pair (to ~15X reference ambient concentrations); and 2) Fish reduced in 

one branch of each creek (~60% decline in mummichog) (Fig. 2). This design resulted in 

4, ~60,000 m2 marsh treatments within each pair: ambient nutrients/ambient 

mummichog, ambient nutrients/low mummichog, high nutrients/ambient mummichog, 

and high nutrients/low mummichog. We will refer to the ambient nutrient creeks as 

'Nutrient Reference’ and the nutrient enriched creeks as 'Nutrient Enrichment'. The fish 

treatments will be called ambient 'Fish' or reduction 'Low Fish'; these are located in either 

a 'Reference' or 'Nutrient Enrichment' creek.  

We used a BACI-type experimental design in which pairing of experimental units 

accounts for variability that would contribute to error in a completely randomized design 

(Underwood 1994). Replication of ecosystem-scale experiments is difficult because it is 

often hard to find similar ecosystems (Carpenter et al. 1995, Schindler 1998); the 
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matched-pair approach helps ameliorate this difficulty (Stewart-Oaten and Bence 2001). 

The use of large experimental units (in our case ~60,000 m2 per treatment) is both labor-

intensive and expensive (~$20,000 per year per creek for fertilizer alone). These types of 

constraints generally necessitate low replication of individual treatments in ecosystem-

scale experiments. While subject to the limitations of pseudoreplication (Hurlbert 1984) 

and small sample size, large-scale manipulative studies provide a realistic environment 

for examining effects and processes that occur at an ecosystem-scale. Our results include 

the effects of spatial variation and complexity, interactions between all of the species in 

the system, gradients across large areas, and large habitat patches.  

The experiment was implemented in phases. In 2003 (Year 0), standardized 

procedures and methods were developed and extensive baseline measurements were 

made in all creeks and branches. In 2004, we began nutrient and fish reduction 

manipulations in Creek Pair 1 (Year 1). In 2005, manipulations continued in Creek Pair 1 

(Year 2), and began in Creek Pair 2 (Year 1). Nutrients were added to Sweeney Creek 

(Pair 1) and Clubhead Creek (Pair 2).  

Nutrient addition  

We implemented an enrichment of 70 μM NO3
- and 4 μM PO4

-3 (15x over a 

background of < 5 μM NO3
- ; ~1 μM PO4

3-; Table 1). These concentrations are typical in 

estuarine systems designated as moderate to highly eutrophic based on the response of 

the pelagic and subtidal system (NOAA 1999, EPA 2002). We added the NO3
- and PO4

-3 

in ~15:1 molar ratio as anthropogenic increases in NO3
- in coastal waters is usually 

accompanied by increased PO4
-3 (EPA 2002). We added nutrients by pumping a 

concentrated solution of NO3
- and PO4

-3 to the flooding water of every tide during the 

growing season (mid-May – Oct.; ~150 d). The pump rate was adjusted every 10 min 

throughout each incoming tide (based on a hydrologic model) to maintain constant N and 

P concentrations in incoming waters until a water depth of 3.2 m in the channel 

(equivalent to ~15 cm of water on the high marsh platform) was reached. The cessation 
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of nutrient addition at water levels >3.2 m affected approximately the last half hour of the 

incoming tide on less than 20% of the tides between May and October. The solution was 

distributed through the water column by vertical and horizontal spreader bars and 

traveled approximately 100 m allowing in-channel mixing to occur before reaching the 

experimental area boundary. 

Fish reduction 

Mummichogs in this estuary have been observed to winter in deep water and 

move up into marsh systems to spawn in May and June, although some may winter in 

pools on the marsh platform (Raposa 2003).  We excluded adult mummichogs from 

entering 1 branch of each creek by using block nets (installed at the branch mouth and 

small channel boundaries prior to the spring migration), and by constantly deployed 

minnow traps that fished throughout the season (selective for mummichogs; Layman and 

Smith 2001). Previous tagging work in these marshes found mummichogs had a home 

range of about 300 linear feet of creek and little movement between creek branches 

(Sweeney et al. 1998). Minnow-trapped mummichogs were released at least 1 km from 

the treatment area; all other species were returned to the creek. The combination of block 

netting and minnow trapping reduced mummichog abundance by ~60% (analyses 

presented below).  

Sampling locations 

Three benchmark sample areas, or “strata” were established on each branch of 

each creek in 2003. Each stratum began in the creek channel, was 10 m wide, and 

extended onto the marsh platform for 50 m. Strata were designed to represent the whole 

treatment area, and to include potential effects of distance from the nutrient addition 

point. The strata were spaced along each branch, ~100 m apart, and each included all 

major habitat types: intertidal mudflat (MF) in the creek, filamentous microalgae (FA) at 

the top of the creek bank, tall form S. alterniflora (TSA) at the top the creek bank, S. 

patens (SP) on the marsh platform, and short form S. alterniflora (SSA) on the platform. 
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From 2003-2005, much of the routine/repeated sample collection, such as benthic 

chlorophyll and invertebrates, sediments, and plant production, was conducted within the 

strata; replicates from each habitat type was collected from within each stratum. Specific 

collection points were haphazardly located within habitats. Additional samples of many 

types were frequently collected outside of the established strata.  

METHODS 

Nutrients and suspended sediments 

We measured baseline water quality characteristics (NO3
-, NH4

+, PO4
3-, TSS, 

salinity, etc.) for 4 growing seasons prior to manipulations (May – Sept, 1998 – 2002). 

We collected water samples during mid-ebb once or twice per month from each creek 

branch and from ~25m seaward of the confluence of each pair of creek branches. Water 

samples were also collected 2-4 times each year from 3 locations in the Plum Island 

Sound to characterize the water that floods the creeks. 

In 2003 (pre-manipulation), 2004 and 2005, we conducted intensive, bi-monthly, 

tidal cycle sampling (hourly sampling over a full, 12-hour tidal cycle). Each month (May 

– Sept), one spring tide cycle and one neap tide cycle were sampled at each creek branch 

and confluence location. Tidal cycle sampling allows calculation of nutrient delivery, 

retention and export (budgets) for whole tidal cycles.  

 One-liter water samples were collected in acid washed, Nalgene bottles using an 

autosampler (SIGMA, Loveland, Colorado). Samples were refrigerated and filtered 

within 24 hours of collection (precombusted 47 mm GFF filter) and frozen until analysis. 

Chlorophyll a (chl a) was determined on the filter (foil wrapped; frozen; 90% acetone 

extraction and fluorometer analysis, Holm-Hansen et al. 1965). NO3
- was determined 

colorimetrically on a flow injection analyzer (Lachat Quik Chem 8000, Lachat Zellweger 

Instruments, Milwaukee, Wisconsin) using the cadmium-copper reduction method (Wood 

et al. 1967). PO4
3- concentrations were determined colorimetrically using the ascorbic 

acid method (Parsons et al. 1984). NH4
+ was determined colorimetrically using the 
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phenolhypochlorite method modified for small sample size (Solorzano 1969). Both PO4
3- 

and NH4
+ samples were run on a Cary Spectrophotometer (Varian Inc., Palo Alto, 

California).  

 Water on the marsh platform at high tide was sampled during 2005. Acid washed, 

narrow mouth bottles were attached to stakes and placed throughout the marsh at low 

tide. The flooding tide filled the bottles, which were retrieved after the tide subsided. 

These samples were treated as above and analyzed for NO3
-. 

In 2003, total suspended solids samples were collected weekly at slack high tide 

within each branch of the four creeks. One-liter samples were filtered through pre-

weighed, ashed filters (47 mm, 0.7 μm GFF). Filters were then ashed and weighed to 

determine the amount of inorganic material in suspension. 

Vascular marsh plants 

 To characterize the marsh community prior to manipulations (July 2003) plant 

species occurrence and visual estimates of percent cover by species were recorded in 

contiguous 1 m2 plots (N = 50) along the length of each strata for each creek (N = 3 strata 

per treatment branch; N = 6 per creek). Plant frequency (percent of plots in which a 

species occurred) and mean percent cover for each species were determined for each 

strata (N = 6 for each species per creek).  

 Shoot growth of tall S. alterniflora, short S. alterniflora, and S. patens was 

determined in Creek Pair 1 (Year1 and Year 2). Every two weeks (mid-May to August) 

haphazardly selected shoots (N = 25) of each type in each stratum were cut at the peat 

surface and refrigerated within two hours. Each shoot was individually washed to remove 

sediment, measured for length, and dried (80°C for at least 24 h). Mean shoot length 

(cm), weight (g) and length specific leaf weight (weight of an individual shoot divided by 

the total length, g/cm) were determined for each shoot. Values were normally distributed 

for all three parameters. Nitrogen and carbon content of tall S. alterniflora, short S. 

alterniflora, and S. patens were determined (June, July and August, 2004; N = 6 per plant 
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type per creek; PerkinElmer 2400 Series II CHNS/O analyzer, PerkinElmer Life and 

Analytical Sciences Inc., Wellesley, Massachusetts). Stem density (shoots per unit area) 

was counted in four plots haphazardly located within 5 m of the centerline of the sample 

strata in August and means calculated for each plant type for each stratum (N = 6 per 

plant type per creek). Because of known differences in stem density between species and 

growth forms, different size quadrats were used for each species: tall S. alterniflora 

square 0.25 m2; short S. alterniflora square 0.0625 m2; S. patens circle 0.008m2. 

Microbial production 

Surface sediment samples for bacterial production were taken using a core (N = 

10; 1.5 cm diameter, < 10 mm depth) monthly during the growing season in tall S. 

alterniflora and S. patens. Replicates were homogenized and then subsampled (N = 5) for 

measurement of bacterial production by uptake of tritiated leucine in sediment slurries 

(Buesing and Gessner 2003).  

Benthic microalgae 

 Benthic microalgal biomass samples were collected monthly (June-September; 

2003, 2004, and 2005; Creek Pair 2 was not sampled in 2004) in mudflat, tall S. 

alterniflora, and S. patens habitats. Macroalgae was rare in these systems. Filamentous 

(and associated epiphytic) algae occur in specific habitats (i.e., the creek wall near the top 

and associated with the stems of short form S. alterniflora) and their responses will be 

discussed in future reports. In Sept 2005, supplemental samples spaced along the entire 

creek branch length were taken in each habitat. Cores were taken in each habitat in each 

sampling area (two per habitat per area; 2.7 cm diameter, 2 cm depth), frozen 

immediately and total chlorophyll a (mg chl a/cm2) determined (Lorenzen 1967; acetone 

extraction and spectrophotometric analysis). Data were log transformed.  

 Benthic microalgal species composition and numerical response were measured 

monthly on glass slides (five slides per collection; one collection per stratum per month) 

located parallel to stream flow in the middle of the creek channel and submerged for 2-3 
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days. Slides were preserved in 70% ethanol and the species composition and density 

determined by microscopic examination. 

Benthic Invertebrates 

Macroinfauna and meiofauna collections were taken coincident with monthly 

benthic microalgal samples. Macroinfauna samples taken ten-weeks after nutrient 

addition and fish reduction treatments began (August 2-3, 2004) in tall S. alterniflora in 

Creek Pair 1 were analyzed. Duplicate cores (6.6 cm diameter push core; to 5 cm depth) 

were collected at low tide and fixed with 10% formalin and Rose Bengal. After a 

minimum of two days, samples were sieved (500-µm sieve) and macroinfauna were 

enumerated and identified to the lowest possible taxon. Permanent meiofauna (e.g., 

nematodes) were not enumerated. Because annelids constituted 98% of all macroinfauna 

and not all species have been identified, we report only total annelid abundance. Data met 

the criteria for normal distribution.  

 To examine the effects of fish reduction on motile saltmarsh epifauna, passive 

collectors (litterbags) were placed in the tall S. alterniflora habitat of reference creeks in 

July 2005. The bags (13.5 x 29 cm, with 5-mm delta weave mesh) were filled with ~20 

grams of dried, standing dead S. alterniflora leaves (Fell et al. 1998). After two weeks 

litterbags were collected and contents preserved in 50% ethanol and Rose Bengal 

solution. After at least two days, litter was rinsed over a 0.5 mm sieve and all animals 

collected using forceps and a hand lens. Animals were identified to lowest possible taxon 

and enumerated. Here we report on the most abundant species collected, the amphipod 

Uhlorchestia spartinophila, which comprised about 75% of the animals collected. 

Nekton abundance, growth and diet 

 Nekton were collected on the marsh surface each month (Sept. - Oct. 2003; June-

Sept. 2004, 2005) during nighttime spring tides in each stratum (N = 3 per treatment 

branch). Flume nets (dyed green 1/8” delta mesh) were 3 m wide at the marsh-creek 

interface and extended perpendicularly 10 m onto the marsh surface (30 m2 of marsh 
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surface). Nets were flush with the marsh surface as the tide rose; at slack high tide, the 

sides were lifted, and the front and back nets attached to enclose the area. The front net 

collected fish as they moved off of the marsh surface with the falling tide. All nekton 

collected were identified to species, and up to 300 individuals of each species measured 

(total length (TL) ± 1 mm) and weighed (g ± 0.01) individually; if we collected more 

than 300 individuals per species, remaining individuals were weighed as an aggregate by 

species. Abundance and biomass were square root (n+1) transformed. Mean size (TL ± 1 

mm) of young-of-the-year Palaemonetes pugio (daggerblade grass shrimp) was estimated 

in August and September using length frequency (NORMSEP procedure; Food and 

Agriculture Organization of the United Nations. 2000. FISAT II. Rome, Italy). Growth 

was estimated as the change in mean size of the smallest size group. Length frequency 

was square root (n+1) transformed before ANOVA analysis. Mummichog diet was 

analyzed on fish (n=20 per treatment/period) captured in flume nets or minnow traps in 

summer of 2004 and 2006. Gut fullness was estimated and items identified to lowest 

practical taxa under a dissecting microscope (Hyslop 1980).  

Data Analysis  

A paired BACI-type ANOVA (Nutrient, Fish Reduction, Before/After) analysis 

with Type III sums of squares was used to analyze the effectiveness of the fish reduction 

treatment, and the response of benthic microalgal biomass and grass shrimp abundance to 

nutrient addition and fish reduction treatments. We present computed P values, but infer 

significance when P < 0.1 because in a complex ecosystem experiment background 

variability is generally high and replication low, and we wanted to identify hypotheses 

with support in the data (Oksanen 2001, Hobbs and Hilborn 2006). Evidence from 

several lines of inquiry were used to further examine support for the responses. Because 

of known differences between creek pairs and because the pairs were manipulated for 

different lengths of time, creek pairs were analyzed separately. Replicates of response 

variables were averaged by sample strata within a treatment (N = 3 per treatment). In 
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exploratory analysis, we found no spatial pattern associated with strata for any variable, 

therefore they were considered independent estimates of the treatment response. Monthly 

data were nested within Treatment Year (0, 1, 2) and Before (0)/After (1, 2). Analysis 

was performed on the mean response variables (appropriately transformed to meet the 

assumption of normality), not differences, so that we could examine the interactive 

effects of nutrient addition and fish reduction. A significant interaction term 

(Nutrient*Fish*Month(Year, Before/After) indicated a difference among treatments over 

time. If a significant interaction occurred, data were examined visually and Tukey or t-

tests used to determine differences (Stewart-Oaten and Bence 2001, Parker and Wiens 

2005). A two-way ANOVA (Nutrient, Fish Reduction) was used to analyze benthic 

microalgal count and macroinfaunal abundance. An ANOVA (Nutrient, Fish Reduction, 

Month) was used to analyze shrimp body size data. All ANOVA's were calculated using 

SuperANOVA (1996, Abacus Concepts, Inc., Berkeley, CA). We expected that fish 

reduction would have no effect on vascular plants, as the overall nutrient regime 

(enriched or reference) would not be altered by fish abundance. This was confirmed by 

initial analyses and therefore vegetation data were pooled between fish treatments within 

a creek (nutrient reference or enrichment) and analyzed using the individual 

measurements.  Because the plant response metrics were calculated from the same 

samples (height and length specific leaf weight, n=125 for each species in each creek), 

we used a Bonferroni adjustment of significance from 0.1 to 0.05. Tukey’s or t-tests were 

used to examine differences among treatments. Plant community data was analyzed using 

the ANOSIM procedure in Primer (Primer 5 for Windows Ver. 5.2.9 © 2002 Primer-E 

Ltd. Plymouth, England). Microbial production was analyzed by plotting nutrient 

enriched against reference values and examining the distribution above and below the 

one-to-one line with Wilcoxon Signed Rank Test.  

RESULTS 

Experimental manipulations 
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Nutrient addition  

In both creek pairs, we achieved our target NO3
- enrichment of approximately 15x 

over reference conditions. Nutrient addition increased the annual average concentration 

of NO3
- in the water flooding in Creek Pair 1 by a factor of ~14X (Year 1) to ~19X (Year 

2) and ~23X in Creek Pair 2 (Table 2). The nutrient addition increased PO4
3- 

concentrations in Creek Pair 1 by a factor of ~5X. We added ~3,500 kg of N (as NaNO3) 

and 250 kg of P (as NaH2PO4) each year to each of the nutrient enriched creeks (Pair 1: N 

– Yr 1 3251 kg, Yr 2 3546 kg; P - Yr 1 231 kg, Yr 2 252 kg; Pair 2: N – Yr 1 4592 kg, P 

– Yr 1 327 kg). Average flooding water nutrient concentrations in Year 0 (prior to 

nutrient addition) in the nutrient enrichment and reference creeks of both pairs (NO3
-: 2.6 

μM; NH4
+ 9.1 μM; PO4

3- 0.9 μM) were similar to the 1998-2002 concentrations (Table 

1). In Year 0, as is typical of salt marshes, ebbing waters generally had lower NO3
- 

concentrations (1.3 μM), while NH4
+ was highly variable through the tidal cycle (<1 to 24 

μM), with high concentrations generally occurring at low tide. PO4
3- remained at ~1 μM 

through the tidal cycle.  

In the first year of nutrient addition to Creek Pair 1, our addition resulted in an 

annual average of 70 μM NO3
- and 5.1 μM PO4

3- for the experimental period. However, 

examination of specific tidal cycles early in the growing season demonstrated lower than 

target concentrations during spring tides and higher than target concentrations during 

neap tides. Consequently, we adjusted the nutrient addition rate in the following year to 

achieve more uniform nutrient concentrations over a variety of tidal regimes.  

The consistent decrease in NO3
- concentration on ebbing tides in both nutrient 

enriched creeks suggests uptake of the added NO3
- by the marsh ecosystem. Significantly 

lower concentrations of NO3
- in ebbing water compared to flooding water in Creek Pair 1 

(Year 1: 58 vs. 70 µM; Year 2: 60 vs. 95 µM) and Creek Pair 2 (98 vs. 116 µM) suggest 

uptake by the marsh. NH4
+ did not differ substantially between flooding and ebbing tides.  
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Despite our initial expectation that the marsh far from the addition point might 

receive water with lower nutrient concentration due to uptake as the water moved across 

the marsh, nutrient concentrations at high tide were high across the marsh platform (Fig. 

3). The mean NO3
- concentration on the nutrient enriched marsh was ~80 µM (range 49 

to 105 µM) for Creek Pair 1. The NO3
- concentration was ~50 µM (range of 2 to 78 µM) 

on the nutrient enriched marsh of Creek Pair 2. On highest tides, some dilution of nutrient 

concentration by water from other creeks outside the study areas was evident on the 

southern border of Creek Pair 2. These edges were several hundred meters away from the 

designated sampling areas and were not sampled for any response variables.  

Fish reduction  

 Reduction of mummichog (Fundulus heteroclitus) was effective with a decrease 

in abundance of ~60% between the ambient Fish and Low Fish treatments (Fig. 4; 

Appendix B). The overall mean was 65 mummichogs/30 m2 in ambient Fish treatments 

compared to 25 mummichogs /30 m2 in Low Fish treatments. Mummichog was the most 

abundant fish species captured (19% of total nekton abundance and 92% of fish 

abundance; 41% of total nekton biomass and 89% of fish biomass over the 3 years). 

Mummichog abundance and biomass was near zero in June and increased rapidly until 

peak abundance in September and October. Mummichogs arrive in June to spawn and 

leave the marsh shortly after October to winter over in deeper water. Mummichog ranged 

in size from 15 to 110 mm and exhibited size classes associated with spawning and 

recruitment events (data not shown). Our sampling methodology was most effective on 

larger mummichogs, suggesting that young-of-the-year, and thus total, mummichog 

abundances in all treatments may be underestimated. Fish abundance differed between 

fish treatments (Before/After*Fish Treatment Pair 1: F = 18.3, P = 0.0001; Pair 2: F = 

2.7, P = 0.10), but there was no additional effect of nutrient addition on mummichog 

abundance for either Creek Pair (Nutrient addition Pair 1: F = 1.3, P = 0.25; Pair 2 F = 

0.06, P = 0.8). In Pair 1 prior to manipulations (Year 0), fish abundance in the reference 

20 



Deegan et al.   Saltmarsh response to multiple stressors 

creek branch randomly chosen for fish reduction was significantly higher (seasonal mean 

133 individuals/30 m2) than the paired ambient fish density branch (43 individuals/30 m2, 

t-test, p <0.001); our removal reduced abundance to below the paired ambient density 

(Low Fish 17 vs. Fish 46 individuals/30 m2; t-test, P < 0.05). In the nutrient enriched 

creek of Pair 2, initial fish abundance was slightly, but not significantly, lower in the 

branch designated for fish reduction (46 individuals/30 m2) compared to the ambient 

density branch (90 individuals/30 m2 with high variation); removal lowered abundance in 

the reduction branch significantly below the previous density in that branch (22 vs. 46 

individuals/30 m2) and well below ambient density in the experimental year (22 vs. 86 

individuals/30 m2; t-test, p <0.05). Reduction was most effective for the larger size 

individuals (> 40 mm TL) as smaller fish were not retained by the minnow traps or 

excluded by the block net. Thus, the effect of removing fish made a larger difference in 

reducing the total biomass compared to the number of individuals of mummichog. The 

overall seasonal average was ~30 g/30 m2 in Low Fish versus ~100g/30 m2 in Ambient 

Fish treatment (Fig. 4). 

Ecosystem Response 

Vascular marsh plants  

 Both S. alterniflora and S. patens growth increased with the nutrient addition, but 

stem density did not change (Fig. 5, Table 3). Nutreint enrichment increased tall S. 

alterniflora stem length by 20% in Year 1 and increased length specific leaf weight (g/cm 

of stem) by 25% in both years compared to the nutrient reference creek in Pair 1 (Fig. 5a, 

b, c, d). Mean short form S. alterniflora length specific leaf weight was greater in both 

years, but the difference was significant only in the first year of nutrient enrichment. S. 

patens length specific leaf weight was indistinguishable between nutrient enriched and 

reference creek in either year of nutrient enrichment (Fig. 5 c, d). In the first year of 

nutrient enrichment, mean height of S. alterniflora (tall and short) and S. patens began to 

diverge between the enriched and reference creeks in July and by mid-August height 
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differences were significant. In the second year of nutrient enrichment, by mid-August S. 

patens was again significantly taller in the nutrient enriched creek, however tall S. 

alterniflora height did not differ between creeks and short S. alterniflora was taller in the 

reference.  

 For both tall and short S. alterniflora, nitrogen content in aboveground shoots was 

higher in plants from the nutrient enrichment creek compared to the reference creek, 

while nitrogen content of S. patens was identical (Fig. 5e,). For belowground biomass, 

tall S. alterniflora in the nutrient enrichment creek had a higher % N than the reference 

but the short S. alterniflora did not differ in its % N. Over the growing season nitrogen 

content of shoot tissue declined by approximately 35% in tall S. alterniflora, 42% in short 

S. alterniflora and 55% in S. patens. Nitrogen content in belowground roots and rhizomes 

was higher in the nutrient enrichment creek for tall S. alterniflora, but short S. 

alterniflora had higher N content in the reference creek.  

After two years of nutrient enrichment, we found no differences in stem density 

associated with nutrient enrichment for all plant species (Table 3). West had higher tall S. 

alterniflora stem density compared to all other three creeks, while short S. alterniflora 

stem density did not differ among creeks. Sweeney and West had higher S. patens stem 

densities than Clubhead and Nelson, but only West was significantly different.  

Microbial production 

The bacterial production assay suggests that the productivity of microbes was 

enhanced by nutrient enrichment in some marsh habitats, but was unaffected in others. In 

the tall S. alterniflora zone rates of production were significantly higher in nutrient 

enriched areas compared paired reference areas, but bacterial production in the S. patens 

zone was unaffected by nutrient enrichment (Fig. 6). These results suggest that the 

microbial response to nutrient enrichment is via some indirect mechanism that has 

differing effects in each marsh habitat. 

Benthic microalgae 
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Several lines of evidence demonstrate that benthic algae had a cumulative 

response to the nutrient addition and that the response to nutrient enrichment was greatest 

in the fish reduction treatment (Fig. 7, 8). By the end of the second year of nutrient 

enrichment, under ambient Fish, benthic microalgal biomass was 60% higher than initial 

baseline and the reference creek for both tall S. alterniflora and mudflat habitats 

(Interaction term: mudflat F = 1.5, P < 0.09; TSA F = 2.3, P < 0.004; Appendix B). 

Nutrient enrichment had a strong positive effect on benthic microalgal biomass in the fish 

reduction treatment in the second year (Fig. 7; t-test, P < 0.05). Nutrient enrichment also 

altered the seasonal pattern and supported a high benthic microalgal biomass in mudflat 

and tall S. alterniflora habitats throughout the summer while in reference creeks and pre-

treatment years microalgal biomass was lowest in mid-summer. The pattern (1998-2002) 

of higher benthic microalgal biomass in tall S. alterniflora and mudflat habitats in the 

reference creek of Creek Pair 1 was also observed in the year immediately prior to 

manipulations (Year 0). In the first year of nutrient enrichment of Pair 1, microalgal 

biomass in the tall S. alterniflora habitat increased over baseline in the nutrient enriched 

creek and was about equal to the mean for the reference creek (1998-2003).  

The benthic microalgal response was spatially variable. Benthic microalgal 

biomass in S. patens habitat did not differ among any treatment or years (F = 1.2, P = 

0.25). Creek Pair 2 had no detectable change in benthic microalgal biomass associated 

with any treatment in any habitat (MF, F = 0.5, P = 0.9; TSA, F = 1.18, P = 0.3; SP, F = 

0.6, P = 0.8; Appendix B). Fish reduction had no discernable effect on microalgal 

biomass in the reference creeks (Fig. 7).  

Microalgal numerical abundance (Creek Pair 1) followed the same pattern as 

mudflat microalgal biomass, with a significant increase in the nutrient enriched creek by 

the end of year 2, although no differences were apparent among treatments in the first 

year. Again, the greatest response to nutrient enrichment was observed in the Low Fish 

treatment (Fig. 8a).  
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Algal species richness increased in response to both the nutrient enrichment and 

the fish reduction (Fig. 8b). Similar to other measures of microalgal response, species 

richness increased more in response to the nutrient enrichment in the fish reduction 

treatment. Species composition differed with nutrient addition, with more diatom species 

and no cyanobacteria species found in the nutrient enriched creek.  

Benthic Invertebrates 

 Infaunal annelid abundance declined with both nutrient enrichment and fish 

reduction. Total abundance ranged between 10,000-40,000 individuals/m2 (Fig. 9a), with 

a 50% reduction in abundance in the nutrient enriched creek (F = 19.13, P < 0.001), and 

within a nutrient treatment slightly lower abundances in the Low fish treatment (F = 3.02, 

P = 0.098); effects were independent (F = 0.00, P = 0.95). Abundance of the amphipod 

(U. spartinophila) increased about 3-fold (Fig. 9b) with reduction of mummichog (t-

value = 4.70, P < 0.0001) in reference creeks.  

Nekton Community  

Daggerblade grass shrimp (Palaemonetes pugio; 79% of abundance, 42 % of 

biomass) and mummichog were the dominant nekton species (combined 98% of total 

abundance) out of 11 species. The other species were typical of salt marshes: Crangon 

septemspinosa (sand shrimp), Carcinus maenas (green crab), Xanthidae sp. (crabs), 

Anguilla rostrata (American eel), Clupeidae sp. (herring), Menidia menidia (Atlantic 

silversides), Apeltes quadracus (fourspine stickleback), Pungitius pungitius (ninespine 

stickleback), and Syngathus fuscus (northern pipefish). These species were not abundant 

or captured frequently enough to examine the effects of the experimental treatments.  

 Grass shrimp responded to the nutrient addition with increased growth, but 

abundance did not differ among treatments (Fig. 10). Grass shrimp abundance increased 

over the season, with peak abundance in the fall (data not shown). The mean abundance 

of P. pugio varied between 50 and 1000 individuals per 30 m2 (sample range 0 – 1319 

individuals per 30 m2). Grass shrimp abundance was variable among years and treatments 
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and did not appear to be affected by any treatment in either Creek Pair (Appendix B). 

Although we found a significant interaction term (Pair 1: F = 2.3, 0.003) in Pair 1, this 

did not appear to be attributable to any treatment effect (Fig. 10). Creek Pair 2 did not 

have a significant interaction (F = 0.89, P = 0.6).  

Growth of grass shrimp in nutrient addition creeks was 50% higher (~6 

mm/month) than growth achieved in the reference creeks (~4 mm/month; Table 4). 

Shrimp grew between August (overall mean = 21 mm TL) and September (overall mean 

= 27 mm TL), with an overall effect of larger size in the nutrient enriched marshes 

(Nutrient: Pair 1 F = 75.25, P < 0.001; Pair 2 F = 22.01, P < 0.0001; Appendix C); fish 

reduction had a small negative effect (Pair 1:F = 43.89, P < 0.0001, Pair 2: F = 5.1, P = 

0.023) in both reference and nutrient addition creeks.  

Mummichog diet was a mixture of detritus, algae, aquatic invertebrates 

(amphipods, polychaete worms, shrimp, isopods, copepods, nematodes, snails) and 

terrestrial insects (spiders, flies, grasshoppers) as has been found in other saltmarshes, 

with an ontogenetic shift from largely carnivorous at small sizes to a more omnivorous, 

plant based, diet at larger sizes (Smith et al. 2000, Wainright et al. 2000, Fell et al. 2003, 

Deegan et al. unpublished data). All fish examined had food in their guts; Gut fullness 

was usually >60%. In 2006, 20% of fish greater than 40 mm TL in the nutrient enriched, 

fish reduction treatment had algae as the most abundant food item in their stomach. 

Detritus was ranked the most abundant item in all other fish (data not shown). 

DISCUSSION 

 Our results demonstrate ecological effects of both nutrient addition and predator 

reduction at the whole-system level, including evidence for synergistic interactions. Our 

nutrient loading rates were about 10x less than previous dry fertilizer plot-level 

experiments, yet we detected responses at several trophic levels within 1-2 y, suggesting 

that application of nutrients via daily water flooding is critical to understanding the 

impacts of coastal N enrichment. The results also suggest that eutrophication may have 
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cumulative effects that are not apparent in a single year of nutrient enrichment and 

interactive effects with species composition. Observed changes in primary producers and 

decomposers suggest a long-term change in N-processing capacity in response to chronic 

N-enrichment. 

Nutrient loading 

Our annual N loadings were low compared to most plot level experiments, despite 

the high concentrations we achieved in the water column. The simplest approach to 

estimating the loading rate in our experiment is to divide the total kg of N added by the 

area of the marsh resulting in a watershed average loading of 30 g N m-2 y-1. This 

approach does not account for the spatial gradient of nutrient delivery set up by the 

differential flooding by the tide and marsh elevation. We can estimate habitat specific 

loading rates by using a marsh-flooding model (Harris, Vallino and Friedrichs, 

unpublished data) that estimates the duration and depth of flooding over the experimental 

addition period of 150 days and measured nutrient concentrations. The intertidal tall S. 

alterniflora habitat experiences a tidally averaged 20 cm of water twice daily, resulting in 

an annual loading of ~60 g N m-2 y-1. In the less frequently flooded S. patens marsh the 

annual loading was around 15 g N m-2 y-1. Nitrogen loading in plot level experiments was 

generally 100 – 500 g N m-2 y-1 (Mendelssohn 1979, Valiela 1983, Dai and Wiegert 1997, 

Boyer and Zedler 1998, Tyler et al. 2003).  

We increased the average loading rate about 10x background for this estuary; 

ambient watershed loading to the whole Plum Island Sound estuary is ~3 g N m-2 y-1 

(Williams et al. 2004). Another perspective on our loading rate is that the amount of N 

that we added was roughly equivalent to the nutrient loading from the addition of 1000 

houses in the upland watershed of each of the nutrient enriched marsh creeks (Cape Cod 

Commission 1992).  

The consistent decrease in NO3
- concentration in ebbing water in both creek pairs 

suggests retention of some of the added NO3
- by the marsh ecosystem. Of course the 
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entire nutrient content of the water is not removed because at high tides water depths are 

too deep and residence time too short to allow for complete assimilation by marsh 

processes. A rough calculation, based on the incoming and outgoing nutrient 

concentrations and a net water balance, suggests that 30-40% of the added nitrogen did 

not leave the marsh in the ebbing water. Hydrodynamic modeling and δ15N tracer 

addition experiments are currently being used to obtain a more precise estimate of the 

retention and fate of the added nutrients.  

Question 1 – Response of vascular plants and microbial decomposers 

The dominant primary producers, Spartina spp. and benthic microalgae generally 

respond positively to N fertilization (Sullivan and Currin 2000, Mendelssohn and Morris 

2000). The combined results of previous studies suggests the dose-response of Spartina 

production was nonlinear with little increase with low N additions (20 g N/m2/y; Valiela 

1983), steep increases at medium amounts (100-500 g N/m2/y) and then no further 

increases at higher N loading rates (Mendelssohn 1979).  

Contrary to our expectation that because of the relatively low loading the plant 

response would not be detectable, S. alterniflora, and perhaps S. patens production has 

increased. The first two years of nutrient enrichment in Creek Pair 1 increased the length 

specific biomass in tall, creek bank S. alterniflora resulting in increased aboveground 

plant production. As in most plot level nutrient loading experiments (e.g., Valiela 1983), 

we found no difference in stem density for any plant species or growth form. Increased 

production resulted from greater biomass per unit length of shoot or longer shoots, or in 

some cases both. We observed a response in year 1 of Creek Pair 1, but not in year 1 of 

Creek Pair 2. In the first year of some studies researchers found little response (Valiela 

1983) while others found differences with nutrient enrichment (Tyler et al. 2003).  

The higher aboveground plant nitrogen content in nutrient enriched plants supports 

the suggestion that both growth forms of S. alterniflora responded to our low nutrient 

loading. Nitrogen content was consistently greater in both tall and short forms of S. 
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alterniflora in the nutrient enriched compared to the reference creek as has been found in 

many other nutrient enrichment studies (Tyler et al. 2003). Interestingly, despite taller 

plants in both years, nitrogen content of S. patens was identical in the two creeks. 

Nitrogen content in roots and rhizomes was less clear-cut with a tendency toward greater 

nitrogen in tall S. alterniflora in the nutrient enriched creek compared to the reference, 

and no difference in short S. alterniflora from the high marsh. This result is similar to 

Boyer et al. (2000) who found that less than 2% of N added was incorporated into root 

tissue and that there was only a slight trend towards increased belowground biomass with 

N nutrient enrichment in a created Spartina foliosa marsh. 

 Spartina spp. exhibits low uptake rates of NO3
- from overlying water (Wright et 

al. 1996) consistent with Spartina obtaining its nutrients from belowground. The 

probable mechanism for increased growth of S. alterniflora near creek edges is tidal 

pumping (Mendelssohn and Morris 2000), which flushed nutrient rich water through the 

root zone at the creek edge. The ditching of the marsh increased water inundation and 

nutrient transport onto the high marsh, potentially increasing the S. alterniflora edge 

effect. The response of S. patens was probably limited by the infrequent flooding of the 

high marsh with the enriched water and because the nutrients do not penetrate deeply into 

the already water saturated soil of the high marsh during the short period of time (3 - 4 

hours) that the marsh is flooded each tide. 

Microbial production 

Nutrient enrichment was expected to stimulate bacterial activity and 

decomposition throughout the ecosystem because of direct uptake of N from the water 

column and availability of more high quality organic matter from increased algal 

production (Howarth and Hobbie 1982). We expected that in sparsely vegetated salt 

marsh habitats such as creek bank S. alterniflora, where there is sufficient light 

penetration for benthic microalgae to proliferate (Pinckney and Zingmark 1993), rates of 

bacterial production would increase as an indirect result of the increase in highly labile 
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carbon from benthic microalgae. Conversely in more densely vegetated habitats such as 

S. patens high marsh we anticipated that, because of the large store of carbon in marsh 

peat, bacteria would be nitrogen limited, and bacterial production would be directly 

enhanced by new nitrogen inputs.  

We found a microbial production increase only in the tall S. alterniflora habitat, 

not in the S. patens high marsh habitat. If bacteria in these salt marsh sediments were 

responding directly to the increased nitrogen input we expected to see stimulation of 

bacterial production in both creek bank S. alterniflora and S. patens habitats. The lack of 

a response to the nutrient addition in the S. patens high marsh habitat was surprising 

given the large store of carbon and the importance of microbial decomposition in salt 

marshes (Howes et al. 1984, Buchan et al. 2003). Nitrate additions in laboratory 

experiments have stimulated aerobic salt marsh detritus decomposition (Howarth and 

Hobbie 1982, Morris and Bradley 1999) and anoxic decomposition via NO3
- reduction 

(Zumft 1991).  

Because we see microbial production stimulation only in the nutrient enriched 

creek bank S. alterniflora habitat where benthic microalgae also increased, this suggests 

that bacteria are responding primarily to increases in high quality organic matter from 

benthic microalgae, not to increases in dissolved nitrogen. Although salt marsh 

macrophytes dominate the total primary productivity in marsh ecosystems, stable isotopic 

evidence indicates that it may not be a preferred carbon source for marsh sediment 

bacteria even in the presence of elevated inorganic nitrogen. Stable carbon isotope ratios 

of bacterial specific polar lipid-derived fatty acids from the Waarde Marsh (The 

Netherlands), indicated that the dominant carbon source for marsh sediment bacteria was 

algal (Boschker et al. 1999). Similarly, in a δ15N tracer addition experiment in the 

Rowley River, Massachusetts, the δ15N value of the bacterial specific biomarker 

diaminopimelic acid indicated that the bacteria were more closely linked to benthic 

microalgae than bulk sediment detritus (Tobias et al. 2003). These findings support the 
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hypothesis that bacterial production is indirectly stimulated through increased production 

of benthic microalgae. We are examining this hypothesis through a δ15N tracer addition 

experiment in the nutrient enriched and reference marshes and with litterbag experiments.  

Question 2 – Top Down Controls  

 We found evidence for top-down control on benthic microalgae and on marsh 

epifauna, but not on benthic infauna. Top-down effects on benthic microalgae were seen 

only under nutrient enrichment suggesting that killifish influence microalgae via direct 

effects (e.g., herbivory). The response of the benthic microalgae is suggestive of a 

synergistic effect of nutrients and top down control and perhaps a self-shading limitation 

(Hillebrand 2005). Benthic algal biomass and productivity typically increased in response 

to N additions but these increases were often limited by marsh grass shading and grazing 

(Pinckney and Zingmark 1993, Sullivan and Currin 2000). The lack of response in 

microalgal biomass in nutrient enriched S. patens was consistent with previous studies 

that found light limited benthic algal production under the dense S. patens canopy; we 

found average light under the S. patens canopy was <3% of ambient (Sheldon, 

unpublished data).  
In the S. alterniflora habitat, where light is often not limiting, the simplest microalgal 

response model assumes a linear increase in biomass with nutrient addition and no 

consumer control. This model predicts that benthic microalgae would increase from 150 

(background) to 2000 mg chl a/m2 with our 15x increase in nutrient enrichment, if there 

were no other limiting factors. While we saw an almost doubling of microalgal biomass 

in Year 2 with nutrient enrichment and fish reduction (to 250 mg chl a/m2), the increase 

was clearly not directly proportional to added nutrients. Species composition also 

changed, with more diatom species and few cyanobacteria species found in the nutrient 

enriched creek, suggesting potential increases in the palatability of algae and loss of N 

fixation. Typical values for benthic microalgal biomass in the S. alterniflora habitat are 

~100 mg chl a/m2 (Sullivan and Currin 2000) suggesting that the initial high microalgal 

biomass might have limited the scope for response before self-shading became limiting 
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(Hillebrand 2005). The highest microalgal biomass measured in any salt marsh habitat 

was 800 mg chl a/m2 in a cyanobacteria mat in a high marsh salt panne (Sullivan and 

Currin 2000). Our nutrient addition decreased the abundance of cyanobacteria, thus 

development of a dense cyanobacteria mat is not likely to occur. It is doubtful that we 

will ever measure 2000 mg chl a/ m2 unless the algal community changes from 

domination by diatoms to filamentous algae or macroalgae. 

Grazers also clearly play a role in the response of benthic microalgae to nutrient 

additions (Sullivan and Currin 2000). We found a top-down control on benthic 

microalgae but only under conditions of nutrient addition. This is consistent with other 

studies that found the largest increases in benthic microalgae in response to increased 

nitrogen occurred when grazers were removed (Sullivan and Currin 2000). Killifish is 

considered a secondary consumer, with a diet of small invertebrates, benthic algae and 

detritus (Deegan et al. 2000, Currin et al. 2003). Contrary to our expectations, benthic 

microalgae increased with mummichog reduction suggesting that either mummichog 

exert top down control by direct grazing or that the trophic cascade operated in ways we 

do not understand. Based on previous work, we expected that mummichog removal 

would result in a trophic cascade in which infauna increase and benthic microalgal 

biomass would decrease in response to increased infaunal grazing. Instead, our results 

suggest that under conditions of high algal productivity killifish may drop in trophic level 

from carnivore to herbivorous grazer and become important grazers in a nutrient enriched 

environment. 

Counter-intuitively, our results show that small infauna abundance decreased 

slightly with mummichog reduction. We did not find the predicted increase in small 

infauna expected if release from predation by mummichog controlled their abundance. 

Our methods of lower mummichog abundance were most effective on fish > 40 mm, and 

larger mummichogs probably prey more heavily on larger epifauna, (e.g., amphipods and 

grass shrimp) and algae than small infauna (Currin et al. 2003, Fell et al. 2003), perhaps 
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explaining the absence of direct top-down control on infauna. An increase in the 

importance of algae in the diet of large mummichogs remaining in the fish reduction 

treatment supports the potential importance of direct grazing; this idea is also being 

examined by stable isotope analysis Additionally, Spartina stems may inhibit foraging by 

F. heteroclitus (Walters et al. 1996, Carson and Merchant 2005), thereby precluding 

strong direct effects in grass habitats.  

Our experimental reduction of mummichogs may have affected an intermediate 

predator of infauna, the grass shrimp, and perhaps initiated an indirect interaction. P. 

pugio graze epiphytic algae and forage for macroinfauna (Fleeger et al. 1999). Smaller 

mummichogs compete with grass shrimp for infaunal food and larger mummichog prey 

on grass shrimp (Kneib and Stiven 1982, Cross and Stiven 1999, Weis et al. 2000). 

Mummichog removal was thus predicted to increase grass shrimp growth and abundance 

and thereby increase grazing pressure on microalgae and infauna. Although we found no 

effect on abundance of grass shrimp with mummichog reduction, fish reduction may have 

allowed grass shrimp to modify their behavior. Carson and Merchant (2005) found that 

grass shrimp reduce swimming behavior in the absence of large mummichogs, resulting 

in increased benthic contact time that may facilitate grass shrimp feeding activities. Thus, 

observed declines in infauna in areas where mummichog abundance was experimentally 

reduced could be mediated by increased grass shrimp predation. We are currently 

examining infaunal responses in other marsh habitats and quantifying species 

composition to determine if responses to mummichog reduction were habitat or species 

specific (Posey et al., 1999, found species-specific responses).  

 An important prey species for large mummichog is the intertidal amphipod 

(Uhlorchestia spartinophila), a large epifaunal amphipod (Deegan, unpublished, Covi 

and Kneib 1995). Amphipod abundance in S. alterniflora habitats more than doubled 

with mummichog reduction (Fig. 9), suggesting release from predation. U. spartinophila 
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is widely distributed through the vegetated intertidal marsh, unlike other talitrid 

amphipods that are restricted to supralittoral zones (Covi and Kneib 1995), and our 

results demonstrate that their abundances may be regulated by mummichog predation. 

This may have consequences for long-term gains or losses in marsh elevation as these 

amphipods are detritivores that can accelerate the decomposition of S. alterniflora litter 

by stimulating microbial activity (Lopez et al. 1977, Bousfield and Heard 1986). These 

amphipods also feed on benthic microalgae (Galván, unpublished data) and it is possible 

that they are important grazers in this system. Additional studies are planned to examine 

treatment effects on amphipod activity patterns. 

 Unexpectedly, infauna responded to nutrient addition with reduced abundance in 

the first year of nutrient addition. We are currently examining annelid biomass to 

determine if there was a per capita increase in biomass with nutrient addition as found by 

Posey et al. (2006). This first year of nutrient addition did not bring about large increases 

in benthic microalgae perhaps explaining why infauna did not respond in a bottom-up 

cascade. Furthermore, the increased body size of grass shrimp in nutrient enriched creeks 

suggests they exerted increased predation pressure on infauna. Collections from the 

second year of nutrient addition are currently being processed.  

Overall, we found that top-down effects may modify the responses of benthic 

microalgae to nutrient enrichment, i.e., a synergistic effect on benthic microalgae 

biomass occurred when nutrient were added and when mummichog was reduced in 

saltmarsh creeks, but that light limitation prevented similar responses in the high marsh. 

Although nutrient addition and predator reduction effects noted to date are best expressed 

as independent on benthic infauna, additional collections across the marsh landscape are 
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being processed. Most tests for interactions among environmental factors are based on 

small-scale exclusion (Posey et al., 1999) or mesocosm studies (Breitburg et al. 1999); 

we anticipate that our whole-ecosystem study will provide a more realistic picture of how 

nutrient addition and predator reduction interact throughout a salt marsh.  

CONCLUSIONS 

Human activity is changing local and global environments at unprecedented rates. Some 

of the most significant changes involve global warming, sea level rise, widespread 

nutrient enrichment, and species changes. All of these affect salt marsh ecosystems. 

Understanding the responses of salt marsh ecosystems to stressors, as well as the 

mechanisms and processes that underlie these responses, is fundamental to the pressing 

regulatory and cultural decisions that many communities now face. Our project fills a 

unique role in provision of an ecosystem-scale, multi-year perspective for management 

decisions, such as installation of sewage treatment plants or regulating housing density 

that will affect coastal communities and ecosystems for generations.  

 The initial results and analyses presented here demonstrate ecological effects of both 

nutrient addition and fish reduction at the whole-system level. Evidence of synergistic 

interactions between these stressors is also emerging, especially at higher trophic levels. 

Given the cumulative effects we have observed, it is far too early to make long-term 

predictions about the relative stimulation of plant production versus microbial 

decomposition. Although we have identified some early effects of these stressors, we 

know that salt marsh ecosystems will respond to stress over time periods much longer 

than two years; some effects may be cumulative, and some, such as plant community 

change, may take many years to develop. This highlights the importance and potential 

benefit of continuing the manipulations for several additional years. Related, ongoing 

studies within the project include sediment dynamics, hydrodynamics, benthic microalgal 

physiological responses, phytoplankton community and nutrient cycling, and isotopic 
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tracer studies examining food webs and biogeochemistry; these will add substantially to 

our understanding of the effects of multiple anthropogenic stressors on salt marsh 

ecosystems. Our continuing work examines response thresholds and time-lags, the 

mechanisms regulating salt marsh responses, cumulative responses over longer periods of 

disturbance, and, we hope eventually, recovery.  
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TABLE 1. Salt marsh characteristics (mean ±1 SE) prior to experimental manipulations 

(1998-2003). 

  Creek Pair 1  Creek Pair 2  Plum 

Island 

Sound 

 P-

value 

Sweeney West Clubhead Nelson  

Marsh creek area 

   (m2X104) 

  

12.5 

 

14.8 

 

11.4 

 

12.1 

 

Water column        

Salinity (‰) 0.001 20.8 ± 0.8a 24.0 ± 0.8ab 27.0 ± 0.8b 25.2 ± 0.9b 29.1 ± 0.9b 

Temperature (o C) 0.009 18.7 ± 0.8a 19.4 ± 0.6a 20.0 ± 0.7a 19.0 ± 0.9a 14.1 ± 1.1b 

Nitrate (μmol/L) 0.023 4.3 ± 0.3a 3.5 ± 0.4a 3.2 ± 0.3a 2.7 ± 0.3a 0.7 ± 0.2b 

Ammonium 

(μmol/L) 

0.001 11.7 ± 1.3a 10.0 ± 1.6a 13.8 ± 1.8a 14.9 ± 2.1a 0.8 ± 0.2b 

Phosphate 

(μmol/L) 

0.001 1.2 ± 0.1a 0.9 ± 0.1a 1.1 ± 0.1a 1.3 ± 0.1a 0.4 ± 0.03b 

Phytoplankton  

  (mg chl a/L) 

0.001 8.4 ± 0.9a 8.8 ± 1.6a 7.4 ± 0.8a 9.0 ± 1.1a 2.5 ± 0.4b 

TSS (mg/L)  15 ± 0.8 18 ± 1.0 19 ± 1.3 14 ± 1.6  

Benthic algae (mg chl a /m2)     

Mudflat  0.001 62.7 ± 3.7b 93.6 ± 7.7a 134.7 ± 6.7c 110 

±11.1a,c 

 

S. alterniflora  0.250 197.5 ± 33.9a 250.8 ± 23.9a 215.2 ± 6.8a 249.0 ±27.4a  

S. patens  0.001 94.6 ± 19.4a 48.6 ± 6.5a 55.1 ± 4.3a 135.9 ± 27.6b  

Vascular Plant Community (% Cover)     
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Tall S. alterniflora 0.738 5.5 ± 1.1 6.2± 1.1 7.1± 1.2 7.1± 1.1  

Short S. 

alterniflora 

0.001 
16.8 ± 1.5 a 18.5± 1.6 a 24.9± 1.9 b 30.6± 1.8 b 

 

S. patens 0.078 41.0 ± 1.7 42.3 ± 1.9  43.6 ± 2.0 37.1 ± 1.7  

D. spicata 0.001 25.9 ± 1.5 a 18.0 ± 1.4 b 7.8 ± 1.1c 8.0 ± 1.1c  

Number of plant 

species m-2 

 

0.001 2.7 ± 0.1 a 2.5 ± 0.1a 2.1 ± 0.0b  2.1±0.1b 
 

Notes: Water column and benthic algae data are from 1998 – 2002. Total suspended 

solids and vascular plant community (% cover) is from 2003, prior to experimental 

treatments. The p-value is for ANOVA main effect for Creek on water column and 

benthic algae. Differences between creek branches were always p > 0.05. Different letters 

indicate differences among creeks within a row (Tukey, p < 0.05). Error degrees of 

freedom N (Appendix A): salinity = 240; temperature = 159; nitrate = 230; ammonium = 

161; phosphate = 250; phytoplankton = 247; mudflat habitat benthic algae = 247; 

Spartina alterniflora habitat benthic algae = 99; Spartina patens habitat benthic algae = 

102; TSS (Total inorganic suspended sediments) = 109; Vascular plants = 23 for each 

plant species and number of species. 
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TABLE 2. Incoming and outgoing nutrient concentrations (mean ± SE) during the major 

tidal water flux periods for all creeks in the pre-manipulation year (Year 0) and nutrient 

addition creeks in treatment years (Year 1, 2). - represents samples that have not yet been 

analyzed. 

 Baseline  Nutrient Addition 

 
All Creeks 

Year 0 
 

Creek Pair 1  

Year 1 

Creek Pair 1  

Year 2 

Creek Pair 2  

Year 1 

 In Out  In  Out In Out In Out 

NO3
- 

(μmol/L) 

2.6 ± 

0.3 

1.3 ± 

0.3 
 

70.7 ± 

38.3 

58.4 ± 

38.9  

94.9 ± 

18.4 

59.2 ± 

17.1 

116.3 

± 20.8 

98.2 ± 

22.4 

NH4
+ 

(μmol/L) 

9.1 ± 

3.1 

4.7 ± 

3.4 
 

9.4 ± 

1.3 

4.4 ± 

0.6 

3.7 ± 

1.0 

6.5 ± 

1.9 
- - 

PO4
3- 

(μmol/L) 

0.9 ± 

0.05 

1.0 ± 

0.08 
 

5.1 ± 

2.6 

4.2  

± 2.5 
- - - - 

  

 

47 



Deegan et al.   Saltmarsh response to multiple stressors 

 

TABLE 3. Stem density (number of stems/m2; mean ± SE) in 2005 for tall Spartina 

alterniflora, short Spartina alterniflora and marsh platform Spartina patens.  

 

 Creek Pair # 1 

Year 2 Nutrient addition 

 Creek Pair # 2  

Year 1 Nutrient Addition 

 Reference Nutrient 

Addition 

 Reference Nutrient 

Addition 

Tall Spartina 

alterniflora 

263 ± 15.9 b 206 ± 12.4 a 197 ± 8.9 a 173 ± 8.7 a 

Short Spartina 

alterniflora 

1336 ± 60 a 1336 ± 118 a  1358 ± 71 a 1532 ± 87 a 

Spartina 

patens 

6938± 2356 b 6263 ± 1246 a,b 5025 ± 1314 a 5575 ± 1767 a 

Notes: Different letters indicate differences among creeks within a row (Tukey, p < 0.05). 

N = 24 for each species for each creek. 
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TABLE 4. Young-of-year grass shrimp (Palaemonetes pugio) size (mean TL (mm) ± SE) 

and growth rate (TL (mm)) between August and September 2005. 

 

Site and 

month or 

growth  

Reference Nutrient addition 

 Fish Low Fish Fish Low Fish 

Creek Pair 1 

August 

 

21.69 ± 0.03 

 

21.55 ± 0.02 

 

23.02 ± 0.03 

 

21.02 ± 0.01 

September 26.97 ± 0.01 24.52 ± 0.01 27.93 ± 0.01 24.71 ± 0.01 

Growth 5.28 2.97 4.91 6.39 

     

Creek Pair 2     

August 21.85 ± 0.02 21.74 ± 0.03 21.53 ± 0.01 21.25 ± 0.01 

September 26.16 ± 0.01 26.07 ± 0.01 28.53 ± 0.01 27.76 ± 0.01 

Growth 4.31 4.33 7.00 6.01 
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FIG. 1: Aerial photograph 

(http://maps.massgis.state.ma.us/MassGISColorOrthos/viewer.htm; April 2001) of the 

Rowley River region salt marshes. Light areas are Spartina patens marsh and the darker 

areas are Spartina alterniflora marsh. Mottled dark areas seen in the northwest and 

southwest corners of the map are upland forest. The areas outlined in white are the 

experimental marshes (SW=Sweeney Creek, WE=West Creek, CL=Clubhead Creek, 

NE=Nelson Creek).
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FIG. 2. Diagram of design of creek pairs and experimental treatments. * indicates 

location of nutrient addition to flooding water; dotted line indicates location of the fish 

barrier. Minnow traps were placed behind this barrier about every 25 m.  
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FIG. 3. NO3
- concentration (µM) on the marsh platform (aerial photograph from 

http://maps.massgis.state.ma.us/MassGISColorOrthos/viewer.htm; April 2001) of the 

nutrient addition creeks of each creek pair at high tide, July 2005. Creek Pair 1 is 

Sweeney, Creek Pair 2 is Clubhead. The white star indicates the point of nutrient addition 

at each study site and the dotted line indicates the location of the fish barrier.  
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FIG. 4. Abundance (number fish/ 30 m2) and biomass (g/m2) of mummichog (Fundulus 

heteroclitus) in experimental creeks. Nutrient reference creeks are squares; nutrient 

enrichment creeks are circles.  Open symbols are reduction in mummichog density 

treatments (Low Fish); closed symbols are ambient mummichog density treatments. 

Along the x-axis, Year 0 corresponds to pre-manipulation year, Year 1 and 2 correspond 

to first and second years of manipulation, numbers above year are months (6 = June etc.), 

small triangles indicate when manipulations began.  
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FIG. 5. Growth and % nitrogen content (mean ± SE). of tall S. alterniflora (TSA), short 

form S. alterniflora (SSA), and S. patens (SP) of Creek Pair 1 after one and two years of 

nutrient addition. A, B: mid-August Shoot height (cm); C, D: mid-August length specific 

leaf weight (dry weight per cm of shoot length); E, F: Nitrogen content (% of dry weight) 

of above- and belowground biomass in year 1 (SP below ground not measured). 

*indicates significantly different pairs (t-test, P < 0.05, n = 125 for each creek for plant 

growth and n= 6 for each creek for %N).  
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FIG. 6. Benthic microbial production in tall S. alterniflora and S. patens habitats in Creek 

Pair 1 ambient fish treatment after 2 years of nutreint enrichment. A significant difference 

from the one-to-one line was found for S. alterniflora (Wilcoxon Signed Rank test z=3.5, 

P < 0.01) but not for S. patens (Wilcoxon Signed Rank test z=0.72, P > 0.10).  
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FIG. 7. Biomass of benthic microalgae (mg chl a m2) in mudflat, S. alterniflora and S. 

patens habitats. Nutrient reference creeks are squares; nutrient enrichment creeks are 

circles.  Open symbols are reduction in mummichog density treatments (Low Fish); 

closed symbols are ambient mummichog density treatments. 
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FIG. 8. Cell counts (A, mean ± SE) and species richness (B, Number of species) of 

benthic algae in Creek Pair 1. A) Nutrient reference creeks are squares; nutrient 

enrichment creeks are circles.  Open symbols are reduction in mummichog density 

treatments (Low Fish); closed symbols are ambient mummichog density treatments. Data 

are from. Triangle indicates start of manipulations. B) F in parentheses indicates 

filamentous species, S indicates single cell species. Data are from Year 2.  
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FIG. 9. Abundance of A) infauna (total annelids, number/m2) in Creek Pair 1 after one 

year of treatments (August 2004) and B) epifaunal (number of Uhlorchestia) in ambient 

Fish and Low Fish treatments in reference creeks (2005).  
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FIG. 10. Abundance of grass shrimp (Palaemonetes pugio; individuals/30 m2) in 

experimental creeks. Nutrient reference creeks are squares; nutrient enrichment creeks 

are circles.  Open symbols are reduction in mummichog density treatments (Low Fish); 

closed symbols are ambient mummichog density treatments. Triangle on x-axis indicates 

start of manipulations.  
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