81 research outputs found

    Ultrasonido a la cabecera del paciente: una herramienta diagnóstica de disección aórtica en el departamento de emergencias

    Get PDF
    The acute aortic syndrome can present as a characteristic clinical picture of a vascular emergency, or on the contrary as a completely atypical form, where the diagnosis challenges the emergency physician, leading to fatal mistakes by ignoring the diagnosis of this entity. In order to show the usefulness of ultrasound performed at the patient bedside in the diagnosis of aortic dissection, we described 9 cases of patients admitted to the emergency department and who were diagnosed with acute aortic syndrome, thanks to the initial ultrasonographic assessment made by residents and specialists in emergency medicine in one hospital in Bogotá, Colombia. This case report shows that ultrasound at the patient bedside, is a noninvasive diagnostic method, accessible and useful for early detection of this disease in the emergency services. © 2016 Sociedad Colombiana de Cardiología y Cirugía Cardiovascula

    FAST-E en Pacientes con Trauma Abdominal Cerrado Estable, en un Departamento de Urgencias en Colombia

    Get PDF
    El impacto que ha generado el trauma en Colombia a lo largo de la historia, nos ha obligado a mejorar y adaptar diferentes tipos de sistemas de atención en trauma, basados en los lineamientos internacionales, los cuales buscan evitar el significativo aumento en las tasas de mortalidad y discapacidad que se obtienen de este, especialmente en los servicios de Emergencias en los cuales se reciben el 100% de estos pacientes con traumatismo múltiple o politraumatismo. Dentro de este grupo de pacientes hay un subgrupo que son las pacientes con trauma de abdomen que cursan con estabilidad hemodinámica y además son clasificados de bajo riesgo, ya sea por índices de trauma o por otros métodos como la medición sérica de lactato, los cuales tienen un papel poco despreciable al momento de ver mortalidad y discapacidad por trauma, ya sea penetrante o cerrado; en este trabajo específicamente nos centramos en las personas que consultan al servicio de Emergencias con trauma cerrado de abdomen los cuales son considerados de bajo riesgo, siendo este subgrupo de pacientes uno de los más difíciles de abordar y enfocar al momento de la valoración inicial, ya que se debe tener la seguridad de que no hay lesiones que comprometen la vida y por consiguiente estos pacientes puedan ser dados de alta.To improve and adapt different types of trauma care systems, based on international guidelines and to avoid significant increase in mortality and disability, we focus on a subgroup of patients who are abdominal trauma patients that present with hemodynamic stability. In recent years abdominal ultrasonography (FAST has managed to reduce time in decision-making, and reduce complication rate in these patients. In our observational study of 65 patients with high mechanism blunt thoracoabdominal trauma and negative EFAST, only 3% required furthe

    Aire. Apoyo Integral Respiratorio en Emergencias

    Get PDF
    El desarrollo de la formación académica en vía aérea difícil concluyó en el texto que se presenta ahora bajo el nombre de AIRE, Apoyo Integral Respiratorio en Emergencias. Este proyecto se inició hace 5 años con el objetivo de desarrollar un curso adquirieran las aptitudes y los conocimientos necesarios para el manejo básico y avanzado de la vía aérea del paciente urgente. Así mismo, respondió a la necesidad creciente de entrenamiento para el manejo avanzado de la vía aérea en el entorno de los servicios de urgencias intra y extra hospitalarias por parte de los médicos generales, especialistas en Medicina de Emergencias, Anestesia, Cirugía General, Medicina Interna, y de todo el personal relacionado con el cuidado del paciente crítico. Fue así como un grupo de conformado por dos emergeciólogos, cuatro residentes de Medicina de Emergencias y una terapeuta respiratoria comenzamos a convertirnos en facilitadores para el aprendizaje de este difícil tema

    Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates

    Get PDF
    Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran\u27s eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2^{2} = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2^{2} = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution

    Mis casos clínicos de especialidades odontológicas

    Get PDF
    Libro que muestra la atención de casos clínicos particulares referente a las diferentes especialidades odontológicasLibro que muestra la atención de casos clínicos particulares referente a las diferentes especialidades odontológicasUniversidad Autónoma de Campeche Universidad Autónoma del Estado de Hidalgo Universidad Autónoma del Estado de Méxic

    Rarity of monodominance in hyperdiverse Amazonian forests.

    Get PDF
    Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees ≥ 10 cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors
    corecore