273 research outputs found

    Refphase: Multi-sample phasing reveals haplotype-specific copy number heterogeneity

    Get PDF
    Most computational methods that infer somatic copy number alterations (SCNAs) from bulk sequencing of DNA analyse tumour samples individually. However, the sequencing of multiple tumour samples from a patient’s disease is an increasingly common practice. We introduce Refphase, an algorithm that leverages this multi-sampling approach to infer haplotype-specific copy numbers through multi-sample phasing. We demonstrate Refphase’s ability to infer haplotype-specific SCNAs and characterise their intra-tumour heterogeneity, to uncover previously undetected allelic imbalance in low purity samples, and to identify parallel evolution in the context of whole genome doubling in a pan-cancer cohort of 336 samples from 99 tumours

    Health-related quality of life during chemoradiation in locally advanced rectal cancer : impacts and ethnic disparities

    Get PDF
    Aims: There is limited data on health-related quality of life (HRQoL) in locally advanced rectal cancer. We assessed HRQoL before, during and after neoadjuvant chemoradiation, correlated this to corresponding clinician-reported adverse events (CR-AEs) and explored disparities between patients of Asian ethnicity versus Caucasians. Correlation between HRQoL and treatment response was also assessed. Methods: A consecutive sample of patients was recruited. HRQoL was assessed with the EORTC QLQ-C30 before chemoradiation, week three of chemoradiation and one-week pre-surgery. Clinical variables including CR-AEs were recorded at these time-points. Patients self-reported socio-demographic variables. Treatment response was assessed by the tumour regression grade. HRQoL data were analysed with multilevel models. Results: Fifty-one patients were recruited. HRQoL completion rates were ≥86%. Cognitive and role functioning worsened significantly during treatment. Emotional, role and social functioning improved significantly at pre-surgery. Fatigue and nausea/vomiting worsened during treatment while fatigue, appetite loss, diarrhoea and financial difficulties improved from treatment to pre-surgery. Almost 30% of the cohort were Asian ethnicity. Differences were found in multiple HRQoL domains between Asians and Caucasians, with Asians faring worse. Significant differences were evident in physical, role and cognitive functioning, and in seven out of the 8 symptom scales. The correlation between patient-reported outcomes and clinician-reported outcomes was weak, with diarrhoea having the strongest correlation (r = 0.58). Vomiting during treatment correlated with poor response, whilst baseline constipation correlated with good response. Conclusion: Chemoradiation for locally advanced rectal cancer affects multiple HRQoL domains. Our findings highlight the importance of psychological aspects of treatment. Significant differences were identified between the Asian and Caucasian populations, with Asians consistently performing worse. Poor correlations between patient and clinician reporting strongly support the inclusion of patient-reported outcomes in clinical studies. HRQoL domains of vomiting and constipation are potential biomarkers of treatment response

    Circulating tumour cell associated microRNA profiles change during chemoradiation and are predictive of response in locally advanced rectal cancer

    Get PDF
    Locally advanced rectal cancer (LARC) has traditionally been treated with trimodality therapy consisting of neoadjuvant radiation +/− chemotherapy, surgery, and adjuvant chemotherapy. There is currently a clinical need for biomarkers to predict treatment response and outcomes, especially during neoadjuvant therapy. Liquid biopsies in the form of circulating tumour cells (CTCs) and circulating nucleic acids in particular microRNAs (miRNA) are novel, the latter also being highly stable and clinically relevant regulators of disease. We studied a prospective cohort of 52 patients with LARC, and obtained samples at baseline, during treatment, and post-treatment. We enumerated CTCs during chemoradiation at these three time-points, using the IsofluxTM (Fluxion Biosciences Inc., Alameda, CA, USA) CTC Isolation and detection platform. We then subjected the isolated CTCs to miRNA expression analyses, using a panel of 106 miRNA candidates. We identified CTCs in 73% of patients at baseline; numbers fell and miRNA expression profiles also changed during treatment. Between baseline and during treatment (week 3) time-points, three microRNAs (hsa-miR-95, hsa-miR-10a, and hsa-miR-16-1*) were highly differentially expressed. Importantly, hsa-miR-19b-3p and hsa-miR-483-5p were found to correlate with good response to treatment. The latter (hsa-miR-483-5p) was also found to be differentially expressed between good responders and poor responders. These miRNAs represent potential predictive biomarkers, and thus a potential miRNA-based treatment strategy. In this study, we demonstrate that CTCs are present and can be isolated in the non-metastatic early-stage cancer setting, and their associated miRNA profiles can potentially be utilized to predict treatment response

    Set It and Forget It! Turnkey ECC for Instant Integration

    Get PDF
    Historically, Elliptic Curve Cryptography (ECC) is an active field of applied cryptography where recent focus is on high speed, constant time, and formally verified implementations. While there are a handful of outliers where all these concepts join and land in real-world deployments, these are generally on a case-by-case basis: e.g.\ a library may feature such X25519 or P-256 code, but not for all curves. In this work, we propose and implement a methodology that fully automates the implementation, testing, and integration of ECC stacks with the above properties. We demonstrate the flexibility and applicability of our methodology by seamlessly integrating into three real-world projects: OpenSSL, Mozilla's NSS, and the GOST OpenSSL Engine, achieving roughly 9.5x, 4.5x, 13.3x, and 3.7x speedup on any given curve for key generation, key agreement, signing, and verifying, respectively. Furthermore, we showcase the efficacy of our testing methodology by uncovering flaws and vulnerabilities in OpenSSL, and a specification-level vulnerability in a Russian standard. Our work bridges the gap between significant applied cryptography research results and deployed software, fully automating the process

    SMPDB: The Small Molecule Pathway Database

    Get PDF
    The Small Molecule Pathway Database (SMPDB) is an interactive, visual database containing more than 350 small-molecule pathways found in humans. More than 2/3 of these pathways (>280) are not found in any other pathway database. SMPDB is designed specifically to support pathway elucidation and pathway discovery in clinical metabolomics, transcriptomics, proteomics and systems biology. SMPDB provides exquisitely detailed, hyperlinked diagrams of human metabolic pathways, metabolic disease pathways, metabolite signaling pathways and drug-action pathways. All SMPDB pathways include information on the relevant organs, organelles, subcellular compartments, protein cofactors, protein locations, metabolite locations, chemical structures and protein quaternary structures. Each small molecule is hyperlinked to detailed descriptions contained in the Human Metabolome Database (HMDB) or DrugBank and each protein or enzyme complex is hyperlinked to UniProt. All SMPDB pathways are accompanied with detailed descriptions, providing an overview of the pathway, condition or processes depicted in each diagram. The database is easily browsed and supports full text searching. Users may query SMPDB with lists of metabolite names, drug names, genes/protein names, SwissProt IDs, GenBank IDs, Affymetrix IDs or Agilent microarray IDs. These queries will produce lists of matching pathways and highlight the matching molecules on each of the pathway diagrams. Gene, metabolite and protein concentration data can also be visualized through SMPDB’s mapping interface. All of SMPDB’s images, image maps, descriptions and tables are downloadable. SMPDB is available at: http://www.smpdb.ca

    Oxidative Phosphorylation Is a Metabolic Vulnerability in Chemotherapy-Resistant Triple-Negative Breast Cance

    Get PDF
    Oxidative phosphorylation (OXPHOS) is an active metabolic pathway in many cancers. RNA from pretreatment biopsies from patients with triple-negative breast cancer (TNBC) who received neoadjuvant chemotherapy demonstrated that the top canonical pathway associated with worse outcome was higher expression of OXPHOS signature. IACS-10759, a novel inhibitor of OXPHOS, stabilized growth in multiple TNBC patient-derived xenografts (PDX). On gene expression profiling, all of the sensitive models displayed a basal-like 1 TNBC subtype. Expression of mitochondrial genes was significantly higher in sensitive PDXs. An in vivo functional genomics screen to identify synthetic lethal targets in tumors treated with IACS-10759 found several potential targets, including CDK4. We validated the antitumor efficacy of the combination of palbociclib, a CDK4/6 inhibitor, and IACS-10759 in vitro and in vivo. In addition, the combination of IACS-10759 and multikinase inhibitor cabozantinib had improved antitumor efficacy. Taken together, our data suggest that OXPHOS is a metabolic vulnerability in TNBC that may be leveraged with novel therapeutics in combination regimens. SIGNIFICANCE: These findings suggest that triple-negative breast cancer is highly reliant on OXPHOS and that inhibiting OXPHOS may be a novel approach to enhance efficacy of several targeted therapies

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Antibodies against endogenous retroviruses promote lung cancer immunotherapy

    Get PDF
    B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy respons
    corecore