70 research outputs found

    Songbird organotypic culture as an in vitro model for interrogating sparse sequencing networks

    Get PDF
    Sparse sequences of neuronal activity are fundamental features of neural circuit computation; however, the underlying homeostatic mechanisms remain poorly understood. To approach these questions, we have developed a method for cellular-resolution imaging in organotypic cultures of the adult zebra finch brain, including portions of the intact song circuit. These in vitro networks can survive for weeks, and display mature neuron morphologies. Neurons within the organotypic slices exhibit a diversity of spontaneous and pharmacologically induced activity that can be easily monitored using the genetically encoded calcium indicator GCaMP6. In this study, we primarily focus on the classic song sequence generator HVC and the surrounding areas. We describe proof of concept experiments including physiological, optical, and pharmacological manipulation of these exposed networks. This method may allow the cellular rules underlying sparse, stereotyped neural sequencing to be examined with new degrees of experimental control

    Mesoscopic patterns of neural activity support songbird cortical sequences

    Get PDF
    Time-locked sequences of neural activity can be found throughout the vertebrate forebrain in various species and behavioral contexts. From time cells in the hippocampus of rodents to cortical activity controlling movement, temporal sequence generation is integral to many forms of learned behavior. However, the mechanisms underlying sequence generation are not well known. Here, we describe a spatial and temporal organization of the songbird premotor cortical microcircuit that supports sparse sequences of neural activity. Multi-channel electrophysiology and calcium imaging reveal that neural activity in premotor cortex is correlated with a length scale of 100 microm. Within this length scale, basal-ganglia-projecting excitatory neurons, on average, fire at a specific phase of a local 30 Hz network rhythm. These results show that premotor cortical activity is inhomogeneous in time and space, and that a mesoscopic dynamical pattern underlies the generation of the neural sequences controlling song

    Unstable neurons underlie a stable learned behavior

    Get PDF
    Motor skills can be maintained for decades, but the biological basis of this memory persistence remains largely unknown. The zebra finch, for example, sings a highly stereotyped song that is stable for years, but it is not known whether the precise neural patterns underlying song are stable or shift from day to day. Here we demonstrate that the population of projection neurons coding for song in the premotor nucleus, HVC, change from day to day. The most dramatic shifts occur over intervals of sleep. In contrast to the transient participation of excitatory neurons, ensemble measurements dominated by inhibition persist unchanged even after damage to downstream motor nerves. These observations offer a principle of motor stability: spatiotemporal patterns of inhibition can maintain a stable scaffold for motor dynamics while the population of principal neurons that directly drive behavior shift from one day to the next

    Measurement of the inclusive isolated-photon cross section in pp collisions at √s = 13 TeV using 36 fb−1 of ATLAS data

    Get PDF
    The differential cross section for isolated-photon production in pp collisions is measured at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC using an integrated luminosity of 36.1 fb. The differential cross section is presented as a function of the photon transverse energy in different regions of photon pseudorapidity. The differential cross section as a function of the absolute value of the photon pseudorapidity is also presented in different regions of photon transverse energy. Next-to-leading-order QCD calculations from Jetphox and Sherpa as well as next-to-next-to-leading-order QCD calculations from Nnlojet are compared with the measurement, using several parameterisations of the proton parton distribution functions. The predictions provide a good description of the data within the experimental and theoretical uncertainties. [Figure not available: see fulltext.

    Recent Progress and Next Steps for the MATHUSLA LLP Detector

    Full text link
    We report on recent progress and next steps in the design of the proposed MATHUSLA Long Lived Particle (LLP) detector for the HL-LHC as part of the Snowmass 2021 process. Our understanding of backgrounds has greatly improved, aided by detailed simulation studies, and significant R&D has been performed on designing the scintillator detectors and understanding their performance. The collaboration is on track to complete a Technical Design Report, and there are many opportunities for interested new members to contribute towards the goal of designing and constructing MATHUSLA in time for HL-LHC collisions, which would increase the sensitivity to a large variety of highly motivated LLP signals by orders of magnitude.Comment: Contribution to Snowmass 2021 (EF09, EF10, IF6, IF9), 18 pages, 12 figures. v2: included additional endorser

    Unstable neurons underlie a stable learned behavior

    Get PDF
    Motor skills can be maintained for decades, but the biological basis of this memory persistence remains largely unknown. The zebra finch, for example, sings a highly stereotyped song that is stable for years, but it is not known whether the precise neural patterns underlying song are stable or shift from day to day. Here we demonstrate that the population of projection neurons coding for song in the premotor nucleus, HVC, change from day to day. The most dramatic shifts occur over intervals of sleep. In contrast to the transient participation of excitatory neurons, ensemble measurements dominated by inhibition persist unchanged even after damage to downstream motor nerves. These observations offer a principle of motor stability: spatiotemporal patterns of inhibition can maintain a stable scaffold for motor dynamics while the population of principal neurons that directly drive behavior shift from one day to the next

    Swept Under the Rug? A Historiography of Gender and Black Colleges

    Full text link

    The ATLAS inner detector trigger performance in pp collisions at 13 TeV during LHC Run 2

    Get PDF
    The design and performance of the inner detector trigger for the high level trigger of the ATLAS experiment at the Large Hadron Collider during the 2016-18 data taking period is discussed. In 2016, 2017, and 2018 the ATLAS detector recorded 35.6 fb1^{-1}, 46.9 fb1^{-1}, and 60.6 fb1^{-1} respectively of proton-proton collision data at a centre-of-mass energy of 13 TeV. In order to deal with the very high interaction multiplicities per bunch crossing expected with the 13 TeV collisions the inner detector trigger was redesigned during the long shutdown of the Large Hadron Collider from 2013 until 2015. An overview of these developments is provided and the performance of the tracking in the trigger for the muon, electron, tau and bb-jet signatures is discussed. The high performance of the inner detector trigger with these extreme interaction multiplicities demonstrates how the inner detector tracking continues to lie at the heart of the trigger performance and is essential in enabling the ATLAS physics programme
    corecore