15 research outputs found
Consistent patterns of common species across tropical tree communities
Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe
Co-limitation towards lower latitudes shapes global forest diversity gradients
The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers
Shift in functional traits along soil fertility gradient reflects non-random community assembly in a tropical African rainforest
Background and aims – There is increasing recognition that plant traits mediate environmental influenceon species distribution, justifying non-random community assembly. We studied the influence of local scale edaphic factors on the distribution of functional traits in a tropical rainforest of Cameroon with the aim to find correlations between the main edaphic gradient and community functional trait metrics (weighted mean trait, functional divergence and intraspecific variation).Methods – Within the Korup Forest Dynamics Plot (50 ha), we randomly selected 44 quadrats of 0.04 ha each, collected soils and analysed 11 topography and soil variables. Leaves were harvested from all 98 tree species found in the quadrats to calculate community trait metrics [quadrat-level weighted mean (qk) and functional divergence (FDivk)] for leaf area (LA), specific leaf area (SLA), leaf phosphorus (LPC), leaf nitrogen concentration (LNC) and nitrogen to phosphorus ratio (N:P ratio). We examined relationships between the main edaphic gradient with qk, with FDivk and with intraspecific variation and interpreted correlations as the effects of abiotic filtering and competitive interaction.Key results – Soil fertility was the main edaphic gradient and was significantly correlated with qk for LPC, LNC and LA and with FDivk for LPC, N:P ratio, LA and SLA, confirming the influence of abiotic filtering and competitive interaction by the soil fertility gradient, respectively. For a given trait, quadrats were either over-dispersed or under-dispersed, accounting for 7–33 % of non-random trait distribution along the soil fertility gradient. Trends in intraspecific traits variation were consistently lower than quadrat-level mean traits along the soil fertility gradient.Conclusions – This study demonstrates the influence of soil fertility gradient on local scale community trait distribution and its contribution to non-random community assembly
LiDAR-based reference aboveground biomass maps for tropical forests of South Asia and Central Africa
International audienceAccurate mapping and monitoring of tropical forests aboveground biomass (AGB) is crucial to design effective carbon emission reduction strategies and improving our understanding of Earth’s carbon cycle. However, existing large-scale maps of tropical forest AGB generated through combinations of Earth Observation (EO) and forest inventory data show markedly divergent estimates, even after accounting for reported uncertainties. To address this, a network of high-quality reference data is needed to calibrate and validate mapping algorithms. This study aims to generate reference AGB datasets using field inventory plots and airborne LiDAR data for eight sites in Central Africa and five sites in South Asia, two regions largely underrepresented in global reference AGB datasets. The study provides access to these reference AGB maps, including uncertainty maps, at 100 m and 40 m spatial resolutions covering a total LiDAR footprint of 1,11,650 ha [ranging from 150 to 40,000 ha at site level]. These maps serve as calibration/validation datasets to improve the accuracy and reliability of AGB mapping for current and upcoming EO missions (viz., GEDI, BIOMASS, and NISAR)
Wind dispersed tree species have greater maximum height
Aim
We test the hypothesis that wind dispersal is more common among emergent tree species given that being tall increases the likelihood of effective seed dispersal.
Location
Americas, Africa and the Asia-Pacific.
Time period
1970–2020.
Major taxa studied
Gymnosperms and Angiosperms.
Methods
We used a dataset consisting of tree inventories from 2821 plots across three biogeographic regions (Americas, Africa and Asia-Pacific), including dry and wet forests, to determine the maximum height and dispersal strategy of 5314 tree species. A web search was used to determine whether species were wind-dispersed. We compared differences in tree species maximum height between biogeographic regions and examined the relationship between species maximum height and wind dispersal using logistic regression. We also tested whether emergent tree species, that is species with at least one individual taller than the 95% height percentile in one or more plots, were disproportionally wind dispersed in dry and wet forests within each biogeographic region.
Results
Our dataset provides maximum height values for 5314 tree species, of which more than half (2914) had no record of this trait in existing global databases. We found that, on average, tree species in the Americas have lower maximum heights compared to those in Africa and the Asia Pacific. The probability of wind dispersal increased significantly with tree species maximum height and was significantly higher among emergent than non-emergent tree species in both dry and wet forests in all three biogeographic regions.
Main conclusion
Wind dispersal is more prevalent in tall, emergent tree species than in non-emergent species and may thus be an important factor in the evolution of tree species maximum height. By providing the most comprehensive dataset so far of tree species maximum height and wind dispersal strategies, this study paves the way for advancing our understanding of the eco-evolutionary drivers of tree size
Pan-tropical prediction of forest structure from the largest trees
Aim: Large tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan‐tropical model to predict plot-level forest structure properties and biomass from only the largest trees.
Location: Pan‐tropical.
Time period: Early 21st century.
Major taxa studied: Woody plants.
Methods: Using a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey’s height, community wood density and above ground biomass (AGB) from the ith largest trees.
Results: Measuring the largest trees in tropical forests enables unbiased predictions of plot‐ and site‐level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey’s height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium‐sized trees (50–70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate‐diameter classes relative to other continents.
Main conclusions: Our approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change
Pan-tropical prediction of forest structure from the largest trees
Aim: Large tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan-tropical model to predict plot-level forest structure properties and biomass from only the largest trees. Location: Pan-tropical. Time period: Early 21st century. Major taxa studied: Woody plants. Methods: Using a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the ith largest trees. Results: Measuring the largest trees in tropical forests enables unbiased predictions of plot- and site-level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium-sized trees (50–70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate-diameter classes relative to other continents. Main conclusions: Our approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change
Co-limitation towards lower latitudes shapes global forest diversity gradients
The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025 degrees x 0.025 degrees) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from similar to 1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers
Co-limitation towards lower latitudes shapes global forest diversity gradients
The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers
Consistent patterns of common species across tropical tree communities
International audienceAbstract Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7 , we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees