8 research outputs found

    Perspective: Measuring Sweetness in Foods, Beverages, and Diets: Toward Understanding the Role of Sweetness in Health.

    Get PDF
    Various global public health agencies recommend minimizing exposure to sweet-tasting foods or beverages. The underlying rationale is that reducing exposure to the perception of sweet tastes, without regard to the source of sweetness, may reduce preferences for sweetness, added sugar intake, caloric intake, and body weight. However, the veracity of this sequence of outcomes has yet to be documented, as revealed by findings from recent systematic reviews on the topic. Efforts to examine and document the effects of sweetness exposure are needed to support evidence-based recommendations. They require a generally agreed-upon methodology for measuring sweetness in foods, beverages, and the overall diet. Although well-established sensory evaluation techniques exist for individual foods in laboratory settings, they are expensive and time-consuming, and agreement on the optimal approach for measuring the sweetness of the total diet is lacking. If such a measure could be developed, it would permit researchers to combine data from different studies and populations and facilitate the design and conduct of new studies to address unresolved research questions about dietary sweetness. This narrative review includes an overview of available sensory techniques, their strengths and limitations, recent efforts to measure the sweetness of foods and diets across countries and cultures, and a proposed future direction for improving methods for measuring sweetness toward developing the data required to support evidence-based recommendations around dietary sweetness

    Non-Nutritive Sweeteners and Their Implications on the Development of Metabolic Syndrome

    No full text
    Individuals widely use non-nutritive sweeteners (NNS) in attempts to lower their overall daily caloric intake, lose weight, and sustain a healthy diet. There are insufficient scientific data that support the safety of consuming NNS. However, recent studies have suggested that NNS consumption can induce gut microbiota dysbiosis and promote glucose intolerance in healthy individuals that may result in the development of type 2 diabetes mellitus (T2DM). This sequence of events may result in changes in the gut microbiota composition through microRNA (miRNA)-mediated changes. The mechanism(s) by which miRNAs alter gene expression of different bacterial species provides a link between the consumption of NNS and the development of metabolic changes. Another potential mechanism that connects NNS to metabolic changes is the molecular crosstalk between the insulin receptor (IR) and G protein-coupled receptors (GPCRs). Here, we aim to highlight the role of NNS in obesity and discuss IR-GPCR crosstalk and miRNA-mediated changes, in the manipulation of the gut microbiota composition and T2DM pathogenesis

    The Biased G-Protein-Coupled Receptor Agonism Bridges the Gap between the Insulin Receptor and the Metabolic Syndrome

    No full text
    Insulin signaling, as mediated through the insulin receptor (IR), plays a critical role in metabolism. Aberrations in this signaling cascade lead to several pathologies, the majority of which are classified under the umbrella term “metabolic syndrome”. Although many of these pathologies are associated with insulin resistance, the exact mechanisms are not well understood. One area of current interest is the possibility of G-protein-coupled receptors (GPCRs) influencing or regulating IR signaling. This concept is particularly significant, because GPCRs have been shown to participate in cross-talk with the IR. More importantly, GPCR signaling has also been shown to preferentially regulate specific downstream signaling targets through GPCR agonist bias. A novel study recently demonstrated that this GPCR-biased agonism influences the activity of the IR without the presence of insulin. Although GPCR-IR cross-talk has previously been established, the notion that GPCRs can regulate the activation of the IR is particularly significant in relation to metabolic syndrome and other pathologies that develop as a result of alterations in IR signaling. As such, we aim to provide an overview of the physiological and pathophysiological roles of the IR within metabolic syndrome and its related pathologies, including cardiovascular health, gut microflora composition, gastrointestinal tract functioning, polycystic ovarian syndrome, pancreatic cancer, and neurodegenerative disorders. Furthermore, we propose that the GPCR-biased agonism may perhaps mediate some of the downstream signaling effects that further exacerbate these diseases for which the mechanisms are currently not well understood

    Neuroendocrine and Metabolic Effects of Low-Calorie and Non-Calorie Sweeteners

    No full text
    corecore