29 research outputs found

    Migrating Mule Deer: Effects of Anthropogenically Altered Landscapes

    Get PDF
    Background: Migration is an adaptive strategy that enables animals to enhance resource availability and reduce risk of predation at a broad geographic scale. Ungulate migrations generally occur along traditional routes, many of which have been disrupted by anthropogenic disturbances. Spring migration in ungulates is of particular importance for conservation planning, because it is closely coupled with timing of parturition. The degree to which oil and gas development affects migratory patterns, and whether ungulate migration is sufficiently plastic to compensate for such changes, warrants additional study to better understand this critical conservation issue. Methodology/Principal Findings: We studied timing and synchrony of departure from winter range and arrival to summer range of female mule deer (Odocoileus hemionus) in northwestern Colorado, USA, which has one of the largest natural-gas reserves currently under development in North America. We hypothesized that in addition to local weather, plant phenology, and individual life-history characteristics, patterns of spring migration would be modified by disturbances associated with natural-gas extraction. We captured 205 adult female mule deer, equipped them with GPS collars, and observed patterns of spring migration during 2008–2010. Conclusions/Significance: Timing of spring migration was related to winter weather (particularly snow depth) and access to emerging vegetation, which varied among years, but was highly synchronous across study areas within years. Additionally, timing of migration was influenced by the collective effects of anthropogenic disturbance, rate of travel, distance traveled, and body condition of adult females. Rates of travel were more rapid over shorter migration distances in areas of high natural-gas development resulting in the delayed departure, but early arrival for females migrating in areas with high development compared with less-developed areas. Such shifts in behavior could have consequences for timing of arrival on birthing areas, especially where mule deer migrate over longer distances or for greater durations

    Motion-triggered video cameras reveal spatial and temporal patterns of red fox foraging on carrion provided by mountain lions

    Get PDF
    Carrion is a rich, ephemeral resource vital to biodiversity and ecosystem health. In temperate ecosystems in which cold temperatures and snowfall influence the accessibility and availability of small prey and seasonal mast crops, carrion may also be a limiting resource for mesocarnivores like red foxes (Vulpes vulpes), which are too small to predate ungulates. Using motion-triggered video cameras and generalized linear mixed models, we studied the spatial and temporal patterns of red fox scavenging at 232 mountain lion kills in the southern Greater Yellowstone Ecosystem (GYE) from 2012–2015. We found that red foxes scavenged mountain lion kills across all habitats throughout the year, however, red fox behaviors varied with season. In winter, we documented red foxes at a greater proportion of mountain lion kills (70.3% in winter vs. 48.9% in summer), and in greater numbers (1.83 foxes per kill in winter vs. 1.16 in summer). In winter, red foxes fed longer (= 102.7 ± 138.3 minutes feeding in winter vs. = 39.7 ± 74.0 in summer), and they more often scavenged while the mountain lion was nearby. We speculated that red foxes may have increased risk taking in winter due to hunger driven by resource scarcity. Our research highlighted an important ecological relationship between red foxes and mountain lions in the GYE. Mountain lions tolerate high levels of scavenging, so the frequency and intensity of red fox scavenging at their kills may not impact mountain lions, but instead facilitate the dispersion and benefits of resources created by this apex predator. Large carnivores, and mid-trophic felids like mountain lions in particular, are essential producers of carrion vital to biodiversity and ecosystem health. In turn, scavengers play critical roles in distributing these resources and increasing the heterogeneity of resources that support biodiversity and ecosystem structure, as well as ecological resilience

    Guidelines for Modeling and Reporting Health Effects of Climate Change Mitigation Actions.

    Get PDF
    BACKGROUND: Modeling suggests that climate change mitigation actions can have substantial human health benefits that accrue quickly and locally. Documenting the benefits can help drive more ambitious and health-protective climate change mitigation actions; however, documenting the adverse health effects can help to avoid them. Estimating the health effects of mitigation (HEM) actions can help policy makers prioritize investments based not only on mitigation potential but also on expected health benefits. To date, however, the wide range of incompatible approaches taken to developing and reporting HEM estimates has limited their comparability and usefulness to policymakers. OBJECTIVE: The objective of this effort was to generate guidance for modeling studies on scoping, estimating, and reporting population health effects from climate change mitigation actions. METHODS: An expert panel of HEM researchers was recruited to participate in developing guidance for conducting HEM studies. The primary literature and a synthesis of HEM studies were provided to the panel. Panel members then participated in a modified Delphi exercise to identify areas of consensus regarding HEM estimation. Finally, the panel met to review and discuss consensus findings, resolve remaining differences, and generate guidance regarding conducting HEM studies. RESULTS: The panel generated a checklist of recommendations regarding stakeholder engagement: HEM modeling, including model structure, scope and scale, demographics, time horizons, counterfactuals, health response functions, and metrics; parameterization and reporting; approaches to uncertainty and sensitivity analysis; accounting for policy uptake; and discounting. DISCUSSION: This checklist provides guidance for conducting and reporting HEM estimates to make them more comparable and useful for policymakers. Harmonization of HEM estimates has the potential to lead to advances in and improved synthesis of policy-relevant research that can inform evidence-based decision making and practice. https://doi.org/10.1289/EHP6745

    The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises

    Get PDF
    The Lancet Countdown is an international collaboration, established to provide an independent, global monitoring system dedicated to tracking the emerging health profile of the changing climate. The 2020 report presents 43 indicators across five sections: climate change impacts, exposures, and vulnerability; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. This report represents the findings and consensus of the 35 leading academic institutions and UN agencies that make up the Lancet Countdown, and draws on the expertise of climate scientists, geographers, and engineers; of energy, food, and transport experts; and of economists, social and political scientists, data scientists, public health professionals, and doctors

    Opportunistic Foraging Behavior By Coyotes ( Canis latrans

    No full text

    Elbrochetal_JAnimEcol_Data

    No full text
    Location data used to create all home ranges and quantify home range overlap

    Data from: Spatial overlap in a solitary carnivore: support for the land-tenure, kinship, or resource dispersion hypotheses?

    No full text
    1. There are several alternative hypotheses about the effects of territoriality, kinship, and prey availability on individual carnivore distributions within populations. The first is the land-tenure hypothesis, which predicts that carnivores regulate their density through territoriality and temporal avoidance. The second is the kinship hypothesis, which predicts related individuals will be clumped within populations, and the third is the resource dispersion hypothesis, which suggests that resource richness may explain variable sociality, spatial overlap, or temporary aggregations of conspecifics. 2. Research on the socio-spatial organization of animals is essential in understanding territoriality, intra- and inter-specific competition, and contact rates that influence diverse ecology, including disease transmission between conspecifics and courtship behaviors. 3. We explored these hypotheses with data collected on a solitary carnivore, the cougar (Puma concolor), from 2005 to 2012 in the Southern Yellowstone Ecosystem, Wyoming, USA. We employed 27 annual home ranges for 13 cougars to test whether home range overlap was better explained by land-tenure, kinship, resource dispersion, or some combination of the three. 4. We found support for both the land-tenure and resource dispersion hypotheses, but not for kinship. Cougar sex was the primary driver explaining variation in home range overlap. Males overlapped significantly with females, whereas the remaining dyads (F-F, M-M) overlapped significantly less. In support for the resource dispersion hypothesis, hunting opportunity (the probability of a cougar killing prey in a given location) was often higher in overlapping than in non-overlapping portions of cougar home ranges. In particular, winter hunt opportunity rather than summer hunt opportunity was higher in overlapping portions of female-female and male-female home ranges. 5. Our results may indicate that solitary carnivores are more tolerant of sharing key resources with unrelated conspecifics than previously believed, or at least during periods of high resource availability. Further, our results suggest that the resource dispersion hypothesis, which is typically applied to social species, is applicable in describing the spatial organization of solitary carnivores

    Pairing camera traps and acoustic recorders to monitor the ecological impact of human disturbance

    No full text
    Over the past two decades, the use of camera traps and acoustic monitoring in the investigation of animal ecology have grown rapidly, with each technique enhancing broad-scale wildlife surveying. Camera traps are a cost-effective, noninvasive means of sampling communities of mid-to large-terrestrial species, and acoustic recording devices capture human sounds and sound-producing animals, including species of mammals, birds, anurans, and insects. Rarely are these techniques combined, despite the advantages of merging their respective strengths. Namely, camera traps paired with acoustic recorders can evaluate the abundance, distribution, and behavior of multiple guilds and trophic levels across landscapes while concurrently monitoring multiple human stressors in real time. Moreover, integrating these approaches enhances detection accuracy and strengthens statistical inference at multiple survey scales. We conducted a literature review, and found only 13 studies that combine camera traps and acoustic recorders, 8 of which either compared the ability of each technique to detect species of interest or discussed the advantages of each technique. We outline potential questions that can be addressed by pairing acoustic recorders and camera traps, including enabling the simultaneous assessment of noise pollution and its impacts on mammal and avian communities. Furthermore, we discuss how the analysis of data from each technique face similar challenges; thus, simultaneous innovation offers the ability to apply solutions to both techniques and amplify their respective strengths. Digital technologies and big data are changing nature conservation in increasingly profound ways and integration of camera traps and acoustic recorders will facilitate new, transformative discoveries to meet modern conservation challenges. Keywords: Acoustic monitoring, Anthropogenic disturbance, Biodiversity, Cameras, Community structure, Inventory and monitoring, Multiple stressor

    Seasonal foraging ecology of non-migratory cougars in a system with migrating prey.

    Get PDF
    We tested for seasonal differences in cougar (Puma concolor) foraging behaviors in the Southern Yellowstone Ecosystem, a multi-prey system in which ungulate prey migrate, and cougars do not. We recorded 411 winter prey and 239 summer prey killed by 28 female and 10 male cougars, and an additional 37 prey items by unmarked cougars. Deer composed 42.4% of summer cougar diets but only 7.2% of winter diets. Males and females, however, selected different proportions of different prey; male cougars selected more elk (Cervus elaphus) and moose (Alces alces) than females, while females killed greater proportions of bighorn sheep (Ovis canadensis), pronghorn (Antilocapra americana), mule deer (Odocoileus hemionus) and small prey than males. Kill rates did not vary by season or between males and females. In winter, cougars were more likely to kill prey on the landscape as: 1) elevation decreased, 2) distance to edge habitat decreased, 3) distance to large bodies of water decreased, and 4) steepness increased, whereas in summer, cougars were more likely to kill in areas as: 1) elevation decreased, 2) distance to edge habitat decreased, and 3) distance from large bodies of water increased. Our work highlighted that seasonal prey selection exhibited by stationary carnivores in systems with migratory prey is not only driven by changing prey vulnerability, but also by changing prey abundances. Elk and deer migrations may also be sustaining stationary cougar populations and creating apparent competition scenarios that result in higher predation rates on migratory bighorn sheep in winter and pronghorn in summer. Nevertheless, cougar predation on rare ungulates also appeared to be influenced by individual prey selection
    corecore