68 research outputs found

    Experimental Demonstration of Technologies for Autonomous On-Orbit Robotic Assembly

    Get PDF
    The Modular Reconfigurable High Energy (MRHE) program aimed to develop technologies for the automated assembly and deployment of large-scale space structures and aggregate spacecraft. Part of the project involved creation of a terrestrial robotic testbed for validation and demonstration of these technologies and for the support of future development activities. This testbed was completed in 2005, and was thereafter used to demonstrate automated rendezvous, docking, and self-assembly tasks between a group of three modular robotic spacecraft emulators. This paper discusses the rationale for the MRHE project, describes the testbed capabilities, and presents the MRHE assembly demonstration sequence

    The Two States of Star Forming Clouds

    Full text link
    We examine the effects of self-gravity and magnetic fields on supersonic turbulence in isothermal molecular clouds with high resolution simulations and adaptive mesh refinement. These simulations use large root grids (512^3) to capture turbulence and four levels of refinement to capture high density, for an effective resolution of 8,196^3. Three Mach 9 simulations are performed, two super-Alfv\'enic and one trans-Alfv\'enic. We find that gravity splits the clouds into two populations, one low density turbulent state and one high density collapsing state. The low density state exhibits properties similar to non-self-gravitating in this regime, and we examine the effects of varied magnetic field strength on statistical properties: the density probability distribution function is approximately lognormal; velocity power spectral slopes decrease with field strength; alignment between velocity and magnetic field increases with field; the magnetic field probability distribution can be fit to a stretched exponential. The high density state is characterized by self-similar spheres; the density PDF is a power-law; collapse rate decreases with increasing mean field; density power spectra have positive slopes, P({\rho},k) \propto k; thermal-to-magnetic pressure ratios are unity for all simulations; dynamic-to-magnetic pressure ratios are larger than unity for all simulations; magnetic field distribution is a power-law. The high Alfv\'en Mach numbers in collapsing regions explain recent observations of magnetic influence decreasing with density. We also find that the high density state is found in filaments formed by converging flows, consistent with recent Herschel observations. Possible modifications to existing star formation theories are explored.Comment: 19 pages, 20 figure

    Exercise Training Prevents the Perivascular Adipose Tissue-induced Aortic Dysfunction with Metabolic Syndrome

    Get PDF
    The aim of the study was to determine the effects of exercise training on improving the thoracic perivascularadipose tissue (tPVAT) phenotype (inflammation, oxidative stress, and proteasome function) in metabolic syn-drome and its subsequent actions on aortic function.Methods:Lean and obese (model of metabolic syndrome) Zucker rats (n=8/group) underwent 8-weeks ofcontrol conditions or treadmill exercise (70% of max speed, 1 h/day, 5 days/week). At the end of the inter-vention, the tPVAT was removed and conditioned media was made. The cleaned aorta was attached to a forcetransducer to assess endothelium-dependent and independent dilation in the presence or absence of tPVAT-conditioned media. tPVAT gene expression, inflammatory /oxidative phenotype, and proteasome function wereassessed.Results:The mainfindings were that Ex induced: (1) a beige-like, anti-inflammatory tPVAT phenotype; (2) agreater abundance of•NO in tPVAT; (3) a reduction in tPVAT oxidant production; and (4) an improved tPVATproteasome function. Regarding aortic function, endothelium-dependent dilation was greater in exercised leanand obese groups vs. controls (p \u3c 0.05). Lean control tPVAT improved aortic relaxation, whereas obese controltPVAT decreased aortic relaxation. In contrast, the obese Ex-tPVAT increased aortic dilation, whereas the leanEx-tPVAT did not affect aortic dilation.Conclusion:Overall, exercise had the most dramatic impact on the obese tPVAT reflecting a change towards anenvironment with less oxidant load, less inflammation and improved proteasome function. Such beneficialchanges to the tPVAT micro-environment with exercise likely played a significant role in mediating the im-provement in aortic function in metabolic syndrome following 8 weeks of exercise

    Mass and Magnetic distributions in Self Gravitating Super Alfvenic Turbulence with AMR

    Full text link
    In this work, we present the mass and magnetic distributions found in a recent Adaptive Mesh Refinement (AMR) MHD simulation of supersonic, \sa, self gravitating turbulence. Powerlaw tails are found in both volume density and magnetic field probability density functions, with P(ρ)ρ1.67P(\rho) \propto \rho^{-1.67} and P(B)B2.74P(B)\propto B^{-2.74}. A power law is also found between magnetic field strength and density, with Bρ0.48B\propto \rho^{0.48}, throughout the collapsing gas. The mass distribution of gravitationally bound cores is shown to be in excellent agreement with recent observation of prestellar cores. The mass to flux distribution of cores is also found to be in excellent agreement with recent Zeeman splitting measurements.Comment: 9 pages, 10 figures (3 color). Submitted to the Astrophysical Journa

    Comparing Numerical Methods for Isothermal Magnetized Supersonic Turbulence

    Get PDF
    We employ simulations of supersonic super-Alfvenic turbulence decay as a benchmark test problem to assess and compare the performance of nine astrophysical MHD methods actively used to model star formation. The set of nine codes includes: ENZO, FLASH, KT-MHD, LL-MHD, PLUTO, PPML, RAMSES, STAGGER, and ZEUS. We present a comprehensive set of statistical measures designed to quantify the effects of numerical dissipation in these MHD solvers. We compare power spectra for basic fields to determine the effective spectral bandwidth of the methods and rank them based on their relative effective Reynolds numbers. We also compare numerical dissipation for solenoidal and dilatational velocity components to check for possible impacts of the numerics on small-scale density statistics. Finally, we discuss convergence of various characteristics for the turbulence decay test and impacts of various components of numerical schemes on the accuracy of solutions. We show that the best performing codes employ a consistently high order of accuracy for spatial reconstruction of the evolved fields, transverse gradient interpolation, conservation law update step, and Lorentz force computation. The best results are achieved with divergence-free evolution of the magnetic field using the constrained transport method, and using little to no explicit artificial viscosity. Codes which fall short in one or more of these areas are still useful, but they must compensate higher numerical dissipation with higher numerical resolution. This paper is the largest, most comprehensive MHD code comparison on an application-like test problem to date. We hope this work will help developers improve their numerical algorithms while helping users to make informed choices in picking optimal applications for their specific astrophysical problems.Comment: 17 pages, 5 color figures, revised version to appear in ApJ, 735, July 201

    COVID-19 Severity Among American Indians and Alaska Natives in 16 States - January 1, 2020, to March 31, 2021

    Full text link
    Objective: To compare rates and risk factors of severe COVID-19-related outcomes between American Indian/Alaska Native (AI/AN) and non-Hispanic White people (NHW). Methods: Aggregate Social Vulnerability Index (SVI), COVID-19-related risk factor, hospitalization, and mortality data were obtained from 16 states for January 1, 2020-March 31, 2021. Generalized estimating equation Poisson regression models calculated age-adjusted cumulative incidences, incidence ratios (IR), and 95% confidence intervals (CI) comparing AI/AN and NHW persons by age, sex, and county-level SVI status. Results: Race data were missing for 42.7% of COVID-19 cases, 24.7% of hospitalizations, and 10.1% of deaths. Risk of AI/AN COVID-19 mortality was 2.6 times that of NHW persons (IR 2.6, 95% CI: 1.7 – 3.4); risk of COVID-19-related hospitalization among AI/AN persons was 3.5 times that of NHW (IR: 3.5, 95% CI: 2.7 – 4.3). Severe COVID-19 outcomes were significantly higher for AI/AN persons compared to NHW persons across all age and sex groups. There was no statistically significant difference in COVID-19 outcomes by SVI status. Associations between severe COVID-19 outcomes and co-morbid risk factors were inconsistent. Conclusions: Results describe increased risk of severe COVID-19 outcomes for AI/AN persons compared to NHW persons despite quality issues in public health surveillance data. Data linkages and improved ascertainment reduce race/ethnicity misclassification and improve data quality. COVID-19-related health burdens among AI/AN persons warrant improved access for AI/AN communities to medical countermeasures and healthcare resources

    A Multiple Identity Approach to Gender: Identification with Women, Identification with Feminists, and Their Interaction

    Get PDF
    The Supplementary Material for this article can be found online at: https://www.frontiersin.org/article/10.3389/fpsyg.2017.01019/full#supplementary-materialAcross four studies, we examine multiple identities in the context of gender and propose that women's attitudes toward gender group membership are governed by two largely orthogonal dimensions of gender identity: identification with women and identification with feminists. We argue that identification with women reflects attitudes toward the content society gives to group membership: what does it mean to be a woman in terms of group characteristics, interests and values? Identification with feminists, on the other hand, is a politicized identity dimension reflecting attitudes toward the social position of the group: what does it mean to be a woman in terms of disadvantage, inequality, and relative status? We examine the utility of this multiple identity approach in four studies. Study 1 showed that identification with women reflects attitudes toward group characteristics, such as femininity and self-stereotyping, while identification with feminists reflects attitudes toward the group's social position, such as perceived sexism. The two dimensions are shown to be largely independent, and as such provide support for the multiple identity approach. In Studies 2–4, we examine the utility of this multiple identity approach in predicting qualitative differences in gender attitudes. Results show that specific combinations of identification with women and feminists predicted attitudes toward collective action and gender stereotypes. Higher identification with feminists led to endorsement of radical collective action (Study 2) and critical attitudes toward gender stereotypes (Studies 3–4), especially at lower levels of identification with women. The different combinations of high vs. low identification with women and feminists can be thought of as reflecting four theoretical identity “types.” A woman can be (1) strongly identified with neither women nor feminists (“low identifier”), (2) strongly identified with women but less so with feminists (“traditional identifier”), (3) strongly identified with both women and feminists (“dual identifier”), or (4) strongly identified with feminists but less so with women (“distinctive feminist”). In sum, by considering identification with women and identification with feminists as multiple identities we aim to show how the multiple identity approach predicts distinct attitudes to gender issues and offer a new perspective on gender identity.This work was supported by Grant no. PSI2016-79971-P from the Spanish Ministry of Science and Technology (AEI/FEDER, UE) awarded to SdL
    corecore