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ABSTRACT

Many astrophysical applications involve magnetized turbulent flows with shock waves. Ab initio star formation
simulations require a robust representation of supersonic turbulence in molecular clouds on a wide range of scales
imposing stringent demands on the quality of numerical algorithms. We employ simulations of supersonic super-
Alfvénic turbulence decay as a benchmark test problem to assess and compare the performance of nine popular
astrophysical MHD methods actively used to model star formation. The set of nine codes includes: ENZO, FLASH,
KT-MHD, LL-MHD, PLUTO, PPML, RAMSES, STAGGER, and ZEUS. These applications employ a variety of
numerical approaches, including both split and unsplit, finite difference and finite volume, divergence preserving
and divergence cleaning, a variety of Riemann solvers, and a range of spatial reconstruction and time integration
techniques. We present a comprehensive set of statistical measures designed to quantify the effects of numerical
dissipation in these MHD solvers. We compare power spectra for basic fields to determine the effective spectral
bandwidth of the methods and rank them based on their relative effective Reynolds numbers. We also compare
numerical dissipation for solenoidal and dilatational velocity components to check for possible impacts of the
numerics on small-scale density statistics. Finally, we discuss the convergence of various characteristics for the
turbulence decay test and the impact of various components of numerical schemes on the accuracy of solutions.
The nine codes gave qualitatively the same results, implying that they are all performing reasonably well and are
useful for scientific applications. We show that the best performing codes employ a consistently high order of
accuracy for spatial reconstruction of the evolved fields, transverse gradient interpolation, conservation law update
step, and Lorentz force computation. The best results are achieved with divergence-free evolution of the magnetic
field using the constrained transport method and using little to no explicit artificial viscosity. Codes that fall short in
one or more of these areas are still useful, but they must compensate for higher numerical dissipation with higher
numerical resolution. This paper is the largest, most comprehensive MHD code comparison on an application-like
test problem to date. We hope this work will help developers improve their numerical algorithms while helping
users to make informed choices about choosing optimal applications for their specific astrophysical problems.
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1. INTRODUCTION

It is well established that the observed supersonic turbulence
plays an important role in the fragmentation of molecular clouds
leading to star formation (Mac Low & Klessen 2004; McKee &
Ostriker 2007). As illustrated by numerical simulations, random
supersonic flows in an isothermal gas result in a complex
network of shocks creating a filamentary density structure
with a very large density contrast (e.g., Kritsuk et al. 2007;
Federrath et al. 2008, see also references in Klessen et al.
2009; Pudritz 2011). Because it can naturally generate density

enhancements of sufficient amplitude to allow the formation of
low-mass stars or even brown dwarfs within complex layers
of post-shock gas, the turbulence may directly affect the mass
distribution of pre-stellar cores and stars (Padoan & Nordlund
2002; Padoan et al. 2007; Hennebelle & Chabrier 2008, 2009).
Furthermore, the turbulence must be at least partly responsible
for the low star formation rate per free-fall time observed in most
environments (Krumholz & Tan 2007) because the turbulent
energy generally exceeds the gravitational energy on small
scales within molecular clouds (the virial parameter is almost
always larger than unity, as shown by Falgarone et al. 1992
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and Rosolowsky et al. 2009 in Perseus). Theoretical models of
the star formation rate based on the effect of turbulence have
recently been proposed (Krumholz & McKee 2005; Padoan &
Nordlund 2011).

The importance of turbulence in the process of star formation
provides an opportunity for theoretical modeling because one
can assume that molecular clouds follow the universal statistics
of turbulent flows, for example, with respect to the probability
density function (PDF) of gas density and the scaling of velocity
differences. Turbulence is also a challenge for numerical sim-
ulations of star formation because the limited dynamical range
of the simulations cannot always approximate well enough the
scale-free behavior of the turbulent flow. The Kolmogorov dis-
sipation scale, ηK, is the smallest turbulent scale below which
viscous dissipation becomes dominant. It can be computed as
ηK = (ν3/ε)1/4, where ν is the kinematic viscosity and ε is
the mean dissipation rate of the turbulence. The kinematic vis-
cosity can be approximated as ν ≈ υth/(σn), where υth is the
gas thermal velocity, n is the gas mean number density, and
σ ≈ 5 × 10−15 cm2 is the gas collisional cross section. The
mean dissipation rate can be estimated as ε ∼ υ3/�, where �
is a scale within the inertial range of the turbulence, and υ is
the rms velocity at the scale �. In molecular clouds, assuming
the Larson (1981) relations υ ∼ 1 km s−1 (�/1 pc)0.42 and
n ∼ 103 cm−3 (�/1 pc)−1, a gas temperature of 10 K, and a
driving scale of ∼70 pc, we obtain ηK ∼ 1014 cm, which is well
below the characteristic spatial resolution of the gas dynamics
in star formation simulations.

The dynamic range limitation of the simulations can be
expressed in terms of the Reynolds number. The Reynolds
number estimates the relative importance of the nonlinear
advection term and the viscosity term in the Navier–Stokes
equation, Re = υrmsL/ν, where υrms ≡

√
〈υ2〉 is the flow rms

velocity, L is the integral scale of the turbulence (of the order of
the energy injection scale). The Reynolds number can also be
expressed as Re = (L/ηK)4/3. Based on the same assumptions
used above to derive ηK, we obtain Re ∼ 108 for typical
molecular cloud values. At present, the largest simulations
of supersonic turbulence may achieve an effective Reynolds
number Re ∼ 104 (Kritsuk et al. 2009a; Jones et al. 2011).

Numerical simulations are incapable of describing the small-
est structures of magnetic fields in star-forming clouds. The
characteristic magnetic diffusivity, η, of the cold interstellar gas
is much smaller than the kinematic viscosity, ν. As a result,
magnetic fields can develop complex structures on scales much
smaller than the Kolmogorov dissipation scale, ηK, where the ve-
locity field is smooth. Introducing the magnetic Prandtl number,
Pm, defined as the ratio of viscosity and diffusivity, Pm = ν/η,
this regime is characterized by the condition Pm � 1. The
magnetic diffusivity can be expressed as η = c2meνen/4πnee

2

(cgs), where c is the speed of light, me is the electron mass,
νen is the collision frequency of electrons with neutrals, ne is
the number density of electrons, and e is the electron charge.
This expression neglects electron–ion collisions because at the
low ionization fractions and temperatures of molecular clouds
the dominant friction force on the electrons is from collisions
with neutrals. The collision frequency of electrons with neu-
trals can be written as νen = nnσυth,e, where nn is the number
density of neutrals (∼n in molecular clouds), σ is the gas colli-
sion cross section given above, and υth,e is the thermal velocity
of the electrons. The magnetic Prandtl number is then given
by Pm ≈ 2 × 105(xi/10−7)(n/1000 cm−3)−1, where xi is the
ionization fraction.

Numerical simulations without explicit viscosity and mag-
netic diffusivity usually have effective values of Pm ∼ 1, very
far from the conditions in molecular clouds. If the magnetic field
strength is determined self-consistently by a small-scale turbu-
lent dynamo, this numerical limitation may cause an artificially
low magnetic field strength in low-resolution simulations, or in
simulations based on MHD solvers with large effective mag-
netic diffusivity. Such simulations may not reach the critical
value of the magnetic Reynolds number, Rm, required by the
turbulent dynamo. The magnetic Reynolds number is defined
as Rm = RePm = υrmsL/η. Its critical value for the turbulent
dynamo in supersonic turbulence was found to be Rmcrit ≈ 80
in the regime with Pm ∼ 1 and for a sonic rms Mach num-
ber Ms ≈ 2.5, where Ms = υrms/cs is the ratio of the flow
rms velocity and the speed of sound (Haugen et al. 2004).
Federrath et al. (2011) find Rmcrit ≈ 40 for transonic turbulence,
driven by the gravitational collapse of a dense, magnetized gas
cloud.

Besides the effective Re and Pm, the other two non-
dimensional parameters of isothermal MHD turbulent simu-
lations are the rms sonic Mach number, defined above, and the
rms Alfvénic Mach number, M0,A = υrms/υ0,A, where υ0,A is
the mean Alfvén speed defined as υ0,A = B0/

√
4πρ0, and B0

and ρ0 are the mean magnetic field and mean gas density, re-
spectively. The initial conditions of the numerical test described
in this work have Ms ≈ 9 and M0,A ≈ 30. In the test runs, the
value of Ms decreases with time (no driving force is used), as
shown in the left panels of Figure 1. υ0,A is instead constant be-
cause both B0 and ρ0 are conserved quantities in the simulations.
However, the rms value of the magnetic field strength,

√
〈B2〉,

depends on both B0 and υrms. In these simulations B0 is very
low, and the turbulence is highly super-Alfvénic, meaning that
υrms � υ0,A. In this regime, the magnetic field is locally am-
plified by compression and stretching resulting in a statistically
steady state with

√
〈B2〉 � B0. The rms Alfvénic Mach num-

ber defined in terms of the mean magnetic and kinetic energies,
MA =

√
〈ρυ2〉/〈B2/4π〉 ≈ 4.4 and decreases with time as the

turbulence decays, as shown by the right panels of Figure 1.
Based on the observed dependence of velocity dispersion on

spatial scale in molecular clouds (e.g., Larson 1981; Heyer &
Brunt 2004), the initial value of Ms in our test runs is relevant
to star-forming regions on scales of a few parsecs. The super-
Alfvénic nature of molecular cloud turbulence was suggested
by Padoan & Nordlund (1999), and has received further support
in more recent work (Lunttila et al. 2008, 2009; Padoan et al.
2010; Kritsuk et al. 2011).

One way to assess the ability of numerical simulations to
approximate the behavior of turbulent flows is to study the
power spectra of relevant quantities, such as velocity and
magnetic fields. The interpretation of velocity power spectra
from numerical simulations face the following problems: (1)
the limited extent of the inertial range of turbulence due
to the limited range of spatial scales discussed above (or
even the complete absence of an inertial range in the case of
low resolution simulations), (2) the emergence of the bottleneck
effect in hydrodynamic simulations (e.g., Falkovich 1994;
Dobler et al. 2003; Haugen & Brandenburg 2004) as soon
as the numerical resolution is large enough to generate an
inertial range, (3) the dependence of the power spectrum on the
numerical schemes, and (4) the dependence of the numerical
resolution necessary for convergence on the numerical method.

This work addresses the above problems and the general issue
of the quality of MHD codes with respect to the description

2



The Astrophysical Journal, 737:13 (17pp), 2011 August 10 Kritsuk et al.

of highly supersonic and super-Alfvénic isothermal turbulent
flows. We do not study the quality of simulations of the
gravitational collapse of gravitationally unstable regions with
adaptive mesh refinement (AMR) or Lagrangian methods in
this paper. Although most star formation simulations eventually
take advantage of such techniques, here we focus on the
simulations of turbulent flows where gravity is neglected. This
work considers high-resolution simulations of MHD turbulence,
while related studies of nonmagnetized flows have been recently
published by Kitsionas et al. (2009) and Price & Federrath
(2010).

The paper is organized as follows. In Section 2, we describe
the simulation setup. In Section 3, we introduce the algorithms
used. In Section 4, we discuss the diagnostic techniques utilized
in the paper. In Section 5 we present the results from each code,
and in Section 6 we discuss the impact of method design on the
numerical dissipation properties. Finally, Section 7 summarizes
our conclusions.

2. THE TURBULENCE DECAY TEST PROBLEM

Modern numerical methods for astrophysical turbulence sim-
ulations are designed to produce approximations to the limit of
viscous and resistive solutions as the viscosity and magnetic
diffusivity are reduced to zero. Numerical experiments carried
out with such methods can be viewed as implicit large eddy
simulations, or ILES (Grinstein et al. 2007). Sytine et al. (2000)
demonstrated that Euler solvers, like PPM (Colella & Woodward
1984), are more efficient than Navier–Stokes solvers in provid-
ing a better scale separation at a given grid resolution (see also
Benzi et al. 2008). Here we employ the same ILES technique
for MHD simulations of decaying supersonic turbulence. The
numerical methods we compare differ in their implicit subgrid
models and the focus of this paper is on understanding the origin
of those differences, which could help to improve our methods.

We thus numerically solve the system of MHD equations for
an ideal isothermal gas in a cubic domain of size L with periodic
boundary conditions:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ρu
∂t

+ ∇·
[
ρuu − BB +

(
p +

B2

2

)
I
]

= ρF, (2)

∂B
∂t

+ ∇ · (uB − Bu) = 0. (3)

Here, ρ and u are the gas density and velocity, B is the magnetic
field strength, p is the gas pressure, and I is the unit tensor.

All numerical methods discussed in this paper are designed
to conserve mass, momentum, and magnetic flux, and attempt
to keep ∇ · B = 0 to machine precision. All methods are
formulated to approximate the ideal MHD Equations (1)–(3).
However, due to the finite numerical viscosity and magnetic
diffusivity, as well as artificial viscosity and diffusivity added
for numerical concerns, the actual equations evolved will have
additional dissipation terms on (2) and (3). The exact nature of
these dissipation terms is method-dependent.

In this section and below, we use dimensionless code units,
such that the domain size L = 1; the gas density ρ is given in
units of the mean gas density ρ0, the gas pressure p is given
in units of uniform initial pressure p0, and the velocity u is
given in units of the sound speed, u = υ/cs. The uniform mean

magnetic field is B0 = √
2/β0 = 0.3, where the ratio of thermal-

to-magnetic pressure β0 = 22. The code units also imply that
B incorporates the 1/4π factor so that the magnetic pressure is
given by B2/2 in the code units.

Initial conditions for the decay test were generated in 2007
with an earlier, non-conservative version of the STAGGER
code on a 10003 grid using a time-dependent random large-
scale (k/kmin � 2, where kmin = 2π/L) isotropic solenoidal
force (acceleration) F to stir the gas and reach an rms sonic
Mach number Ms,0 ≈ 9. There was no forcing in the induction
Equation (3), so the rms magnetic field was passively amplified
through interaction with the velocity field. The model was
initiated with a uniform density ρ0 and pressure p0, random
large-scale velocity field u0, and a uniform magnetic field B0
aligned with the z-coordinate direction. To achieve a saturated
turbulent state, the flow was evolved with the STAGGER code
for three dynamical times (defined as td ≡ L/2Ms,0). Assuming
an initial Ms,0 = 10, td = 0.05 in the code units determined by
the box sound crossing time. In the saturated turbulent state, the
level of magnetic fluctuations is ∼50 times higher than B0, i.e.,
B = B0 + b, where brms � B0 and 〈b〉 ≡ 0.

The actual test runs were performed at grid resolutions
of 2563, 5123, and in a few cases (PPML and ZEUS) also
10243 cells. Data regridding utilized conservative interpolation
of hydrodynamic variables while a vanishing ∇ · B in the
interpolated initial states was enforced with ∇ · B cleaning.
The evolution of decaying turbulence (F ≡ 0) was followed
for Δt = 0.2 = 4td and 10 flow snapshots equally spaced in
time were recorded for subsequent analysis. The timing of these
snapshots in the adopted time units is as follows: t1 = 0.02,
t2 = 0.04, . . . , t10 = 0.2, assuming t = 0 corresponds to the
end of the initial forcing period.

3. NUMERICAL METHODS AND IMPLEMENTATIONS

3.1. ENZO 2.0

ENZO’s (O’Shea et al. 2005) MHD scheme (Wang & Abel
2009) employs the following components: second-order spatial
interpolation via the Piecewise Linear Method (van Leer 1979),
second-order time integration via a second-order Runge–Kutta
method (Shu & Osher 1988), the HLL Riemann solver for com-
putation of interface fluxes (Harten et al. 1983), and the Dedner
et al. (2002) scheme for maintaining the divergence of the mag-
netic field close to zero. The code is formally second-order
accurate in both time and space. These one-dimensional com-
ponents are combined to form a three-dimensional method in a
directionally unsplit manner, with the Runge–Kutta integration
mediating the wave information between the three flux compu-
tations. The slope limiter θ , which controls the sharpness of the
reconstruction, was set at 1.5 as in Wang et al. 2008. Larger
values were tried for 2563 grids, without significant change to
the solution.

3.2. FLASH 3

The FLASH3 (Fryxell et al. 2000; Dubey et al. 2008) simula-
tions presented in this study have used a completely new MHD
scheme implementation (Lee & Deane 2009). The solver adopts
a dimensionally unsplit integration on a staggered grid (unsplit
staggered mesh (USM)), for the multidimensional MHD formu-
lation, based on a finite-volume, higher-order Godunov method.
A new second-order data reconstruction-evolution method, ex-
tended from the corner transport upwind (CTU) approach of
Colella (1990) has been used, which guarantees proper evolution
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of in-plane dynamics of magnetic fields. The importance of the
in-plane field evolution is described and tested in the field-loop
advection test in Gardiner & Stone (2005). The USM solver has
also shown a successful performance on this test, maintaining a
correct in-plane field dynamics (Lee & Deane 2009). The algo-
rithm uses a new “multidimensional characteristics analysis” to
calculate transverse fluxes. This approach is advantageous and
efficient because it does not require solving a set of Riemann
problems for updating transverse fluxes. High Mach number
turbulent flows require a precise and positive-preserving solver
capable of resolving complex shock structures while keeping
numerical diffusion as small as possible. We therefore chose the
HLLD Riemann solver (Miyoshi & Kusano 2005), which greatly
improves the robustness and accuracy of supersonic MHD tur-
bulence simulations as the Roe solver easily fails to preserve
positive states of density and/or pressure in strong rarefaction
waves. For further enhancing solution accuracy and stability,
we chose a hybrid limiter that uses the compressive van Leer’s
slope limiter for linearly degenerate waves and the more diffu-
sive minmod limiter for genuinely nonlinear waves.

3.3. KT-MHD

The KT-MHD code is an implementation of a semidiscrete
central-difference scheme developed by Kurganov & Tadmor
(2000). The total time derivative of the hydrodynamic quantities
is computed using the flux definition of the Kurganov–Tadmor
scheme, a higher-order extension of the Lax–Friedrichs scheme.
The flux values are evaluated at the cell interfaces. The corre-
sponding point values of the conserved quantities are interpo-
lated to the cell interfaces via a third-order CWENO scheme in
three space dimensions following Balbas & Tadmor (2006). The
averages of the magnetic field components reside at the cell in-
terfaces and are reconstructed in a diagonal direction, also using
a third-order CWENO scheme. The smoothness indicators (and
thereby the nonlinear weights) of the CWENO scheme are based
on the density field only. Components-wise smoothness indica-
tors have shown to lead to a much higher numerical viscosity.
The total time derivative of the magnetic field is computed by
the constrained transport (CT) method of Ziegler (2004). The re-
sulting set of ordinary differential equations is integrated in time
by a fourth-order Runge–Kutta scheme. The code uses a regular
grid and the so-called pencil decomposition in its MPI-parallel
implementation. The idea of combining the Kurganov–Tadmor
central-difference scheme with a CT method for the magnetic
field update was first implemented by Ralf Kissmann and pub-
lished in his PhD thesis (Kissmann 2006) and is used by Dreher
& Grauer (2005) in their Racoon code.

3.4. LL-MHD

The CT-based LL-MHD solver (Collins et al. 2010) employs
the divergence preserving higher-order Godunov method of Li
et al. (2008), which uses second-order spatial reconstruction and
second-order time reconstruction to compute the interface states,
and the isothermal HLLD Riemann solver of Mignone (2007) to
compute the flux from those reconstructed states. This is done
in a directionally split fashion, with the order permutation of
Strang to preserve the second-order accuracy. The solver uses
the CT method of Gardiner & Stone (2005) to maintain the
divergence-free evolution of the magnetic field. LL-MHD is
also installed in the AMR code ENZO, and has been used to
study a range of astrophysical phenomena, from galaxy clusters
(Xu et al. 2010) to pre-stellar cores (Collins et al. 2011).

3.5. PLUTO 3.1

The PLUTO code (Mignone 2009) is a highly modular, multi-
dimensional and multi-geometry code that can be applied to rel-
ativistic or non-relativistic MHD or HD (hydrodynamic) flows.
PLUTO comprises several numerical methods, such as the high-
order conservative finite-difference divergence cleaning MHD
method (Mignone & Tzeferacos 2010) as well as finite-volume
CTU schemes (Mignone et al. 2010). The latest version of the
PLUTO code (V. 3.1—2010 August) allows one to choose be-
tween several space reconstruction and time integration methods
as well as several approximate Riemann solvers including HLL,
HLLC, HLLD, or the Roe Riemann solver. For the MHD for-
mulation one can choose between the eight-wave formulation
(Powell et al. 1999), the divergence cleaning method (Dedner
et al. 2002), and the CT method. The possibility of switching
between several numerical methods allows one to handle a wide
range of astrophysical problems. For this test we used the ac-
curate Roe Riemann solver in combination with a third-order
reconstruction (Čada & Torrilhon 2009), characteristic variable
limiting, the Runge–Kutta 3 time integration, and the Powell
et al. (1999) eight-wave MHD formalism; three-dimensional
effects were incorporated by way of the Runge–Kutta integra-
tion without the use of the transverse flux gradients used in
CTU. The Courant number was set to 0.3.

3.6. PPML

The piecewise parabolic method on a local stencil (PPML,
Ustyugov et al. 2009) is a compact stencil variant of the popu-
lar PPM algorithm (Colella & Woodward 1984) for compress-
ible magnetohydrodynamics. The principal difference between
PPML and PPM is that cell interface states are evolved rather
than reconstructed at every time step, resulting in a more com-
pact stencil. The interface states are evolved using Riemann
invariants containing all transverse derivative information. The
conservation laws are updated in an unsplit fashion, making the
scheme fully multidimensional. Divergence-free evolution of
the magnetic field is maintained using the higher-order-accurate
CT technique of Gardiner & Stone (2005). The method em-
ploys monotonicity constraints to preserve the order of scheme
in points of local extrema (Suresh & Huynh 1997; Balsara &
Shu 2000; Rider et al. 2007). To preserve monotonicity in multi-
dimensions a method from Barth (1990) is additionally applied.
An updated component of the electric field at a cell boundary
is calculated by averaging the quantities obtained from known
components of flux-vectors and values of gradient of the elec-
tric field (Gardiner & Stone 2005). The performance of PPML
was tested on several numerical problems, which demonstrated
its high accuracy on both smooth and discontinuous solutions
(Ustyugov et al. 2009). Simulations of supersonic magnetized
turbulence in three dimensions with PPML show that the low
dissipation and wide spectral bandwidth of this method make
it an ideal candidate for direct turbulence simulations (Kritsuk
et al. 2009a, 2009b).

3.7. RAMSES

RAMSES (Teyssier 2002) is an unsplit Godunov AMR
scheme with a second-order total variation diminishing spatial
reconstruction using the Monotonized Central slope limiter. The
magnetic field is updated using the CT method, using a two-
dimensional Riemann problem at cell edges to compute the
electro-motive force that enters into the induction equation. The
magnetic field divergence, expressed in an integral form on cell
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faces, is therefore zero down to machine accuracy. Conservative
variables are updated by solving one-dimensional Riemann
problems at cell faces. Both the one-dimensional and the two-
dimensional Riemann solvers are based on the HLLD MHD
approximate Riemann solution (Miyoshi & Kusano 2005). More
details on the MHD scheme can be found in Teyssier et al. (2006)
and Fromang et al. (2006).

3.8. STAGGER

The STAGGER Code is originally based on a code developed
as part of the PhD thesis of Klaus Galsgaard (Galsgaard 1996).
Several versions exist, and the code is used in many different
circumstances (Galsgaard & Nordlund 1996; Padoan et al. 1997,
1998, 2000; Stein & Nordlund 1998; Asplund et al. 2000;
Padoan et al. 2004; Gudiksen & Nordlund 2005; Braithwaite
& Nordlund 2006; Archontis et al. 2007; Lunttila et al. 2009;
Stein et al. 2011; Padoan & Nordlund 2011).

In the context of solar and stellar physics it is equipped with
a multi-frequency radiative transfer module and a comprehen-
sive equation of state module that includes a large number of
atomic and molecular species, to be able to compute realistic
three-dimensional models of the near-surface layers of stars. The
widths, shifts, and asymmetries of synthetic spectral lines com-
puted from such models exemplifies some of the most precise
agreements between three-dimensional numerical simulations
and astrophysical observations (Asplund et al. 2000).

In the context of supersonic turbulence studies earlier works
(Padoan et al. 1997, 1998, 2000) were based on a non-
conservative version of the code, which evolved the primitive
variables ln ρ, u, and B. The “per-unit-mass” formulation based
on these variables is simple and robust, but has the disadvantage
that mass and momentum are not conserved exactly by the
discretized equations.

The current version of the code instead uses the per-volume
variables ρ, ρu, and ρE, where E is the internal energy per unit
mass, allowing a discretization that explicitly conserves mass,
momentum, energy, and magnetic flux. In the isothermal case
of relevance here the code solves these equations:

∂ρ

∂t
= − ∇ · ρu, (4)

∂ρu
∂t

= − ∇ · (ρuu + τ ) − ∇p + (∇ × B) × B, (5)

∂B
∂t

= − ∇ × (−u × B + η∇ × B), (6)

where τ is the viscous stress tensor, which we write as

τij = −ρνSij , (7)

and Sij is the strain rate

Sij = 1

2

(
∂uj

∂ri

+
∂ui

∂rj

)
. (8)

The viscosity ν and magnetic diffusivity η are spatially de-
pendent, in a manner reminiscent of the Richtmyer & Morton
formulation, with

ν = (n1uw + n2 δu+)Δs , (9)

where Δs is the mesh size, uw is the wave speed, δu+ is the
positive part of a second-order approximation of −Δs ∇ ·u. The
magnetic diffusivity is taken to be

η = nB(n1uw + n2δu
+
B)Δs , (10)

where δu+
B is analogous to δu+, except only the component of

the velocity perpendicular to B is counted.
Here, n1, n2, and nB are numerical coefficients of the order

of unity. The n1uw term, where n1 ∼ 0.03 is a relatively
small constant, is needed to provide stabilization and a weak
dispersion of linear waves, while the n2 δu+ term, with n2 ∼ 0.5,
provides enhanced dissipation in shocks, where the rate of
convergence −∇ · u is large. Since the magnetic field is
insensitive to motions parallel to the field, only perpendicular
motions are gauged by the corresponding magnetic diffusivity
term. nB is essentially an inverse magnetic Prandtl number.

The tensor formulation of the viscosity ensures that the
viscous force is insensitive to the coordinate system orientation,
thereby avoiding artificial grid-alignment.

3.9. ZEUS-MP

ZEUS-MP is a widely used, multiphysics, massively parallel,
message-passing Eulerian code for astrophysical fluid dynamic
simulations in three dimensions. ZEUS-MP is a distributed
memory version of the shared-memory code ZEUS-3D that uses
block domain decomposition to achieve scalable parallelism.
The code includes hydrodynamics, magnetohydrodynamics,
and self-gravity. The HD and MHD algorithms are based
on the method of finite differences on a staggered mesh
(Stone & Norman 1992a, 1992b), which incorporates a second-
order-accurate, monotonic advection scheme (van Leer 1977).
The MHD algorithm is suited for multidimensional flows
using the method of characteristics scheme first suggested by
Hawley & Stone (1995). Advection is performed in a series
of directional sweeps that are cyclically permuted at each time
step. Because ZEUS-MP is designed for large simulations on
parallel computing platforms, considerable attention is paid
to the parallel performance characteristics of each module in
the code. Complete discussion on all algorithms in ZEUS-MP
can be found in Hayes et al. (2006). All the MHD turbulence
decay simulations performed using ZEUS-MP in this paper
use a quadratic (von Neumann-Richtmyer) artificial viscosity
coefficient qcon of 2.0 and a Courant number of 0.5.

4. DATA ANALYSIS

4.1. Power Spectra

Given a vector field u(r) discretized on a mesh i, j, k with
ui,j,k one can compute a power spectrum from the three-
dimensional Fourier transform ũi,j,k by summing the magni-
tudes squared, |ũi,j,k|2, over k-shells with Kn � |ki,j,k| < Kn+1.
If the Fourier transform coefficients ũi,j,k are normalized so the
rms value of the corresponding function in real space is equal
to unity, then the sum of the squares in Fourier space is equal
to the average of the function squared in real space (Parseval’s
relation):

rms2 =
∑
i,j,k

|ũi,j,k|2 = 1

N

∑
i,j,k

|ui,j,k|2, (11)

where N is the total number of i, j, k points.
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In the codes used to analyze the results for the current
paper we use the real valued Fast Fourier Transform routine
srfftf from the fftpack software package, which returns
coefficients ak = N/2 for sine and cosine functions, except
for the DC and Nyquist components, which return coefficients
N. Proper power normalization requires that sine and cosine
components contribute power 1/2, and the returned coefficients
should thus be multiplied by

√
2/N , except for the DC and

Nyquist components (which are the first and last coefficients
returned from srfftf), which should be multiplied by 1/N .

The power spectrum P (k) expresses how much of the power
falls in each k-interval. If the power is collected in discrete bins,

Pn =
∑

Kn�|ki,j,k |<Kn+1

|ũi,j,k|2, (12)

then the total power can also be expressed as

rms2 =
∑

n

Pn, (13)

where the sum is taken over all bins.
To illustrate the power spectrum Pn graphically one needs

to assign a wavenumber kn to each bin. A natural but not
quite optimal choice is to use the midpoint of the bin; kn =
(Kn + Kn+1)/2. A better choice is to use the mean of the
wavenumbers that actually fall inside the bin (to see why this is
better, consider a case with very wide bins and a function with
power at only a few discrete wavenumbers).

It turns out that one gets smoother power spectra if one assigns
a value

P ′
n = 4π

3

(
K3

n+1 − K3
n

) 1

Nbin

∑
bin

|ũi,j,k|2 (14)

rather than
Pn =

∑
bin

|ũi,j,k|2 (15)

to each bin. In other words: power spectra (at least those
measuring fluid flow properties) become smoother if they
measure the average power in a shell (times the shell volume)
rather than the total power. One can interpret this to mean that
fluid flow properties are encoded in Fourier amplitudes as a
function of wavenumber, rather than in total power of Fourier
amplitudes in a shell. If (and only if) this is the case, then the
power spectrum fluctuates (as observed) down (or up) if by
chance a shell contains fewer (or more) discrete wavenumbers
than expected.

To be able to recover Pn from P ′
n (e.g., for use in Parseval’s

relation) it is necessary to record the number of discrete Fourier
amplitudes in each bin, Nbin in Equation (14) above.

Note also, that in order for Parseval’s relation to be exact for
three-dimensional power spectra, all Fourier components need
to be included, which means that the k-scale should really extend
to a maximum value of

√
3 kN, where kN is the one-dimensional

Nyquist frequency. Nevertheless, here we follow the common
practice to truncate the three-dimensional power spectra at kN.

4.2. Helmholtz Projections

The divergence of a vector field fi,j,k , with Fourier transform
coefficients f̃i,j,k , is

FT(∇ · f) = iki,j,k · f̃i,j,k. (16)

The vector coefficients f̃i,j,k may be split into a component paral-
lel to ki,j,k and a remaining component, which is perpendicular
to ki,j,k:

f̃‖
i,j,k = ki,j,k(ki,j,k · f̃i,j,k)/|ki,j,k|2, (17)

and
f̃⊥
i,j,k = f̃i,j,k − f̃‖

i,j,k. (18)

Taking the divergence of the latter, we have

iki,j,k · f̃⊥
i,j,k = iki,j,k · f̃i,j,k − iki,j,k

· ki,j,k(ki,j,k · f̃i,j,k)/|ki,j,k|2 = 0. (19)

The inverse transform based on the f̃⊥
i,j,k coefficients is thus

solenoidal, while the inverse transform based on f̃‖
i,j,k is purely

compressional.

5. RESULTS

There is a great variety of interesting statistical measures in
magnetized supersonic turbulent flows to study and compare.
The KITP07 project originally implied a comparison of density
structures in physical space using projections and slices, PDFs
of the gas density, various power spectra and structure functions,
time evolution of some global and local average quantities, etc.
Most of these data provided by individual contributors to the
project can be accessed electronically via the wiki Web site at
KITP under the rubric Star Formation Test Problems.18

In this paper, we mainly focus on the statistics of the basic
MHD fields (the so-called primitive variables) since those are
easier to interpret and link back to the essential features of the
numerical methods. Since the system of equations and the initial
and boundary conditions are the same for all codes, the only
source of differences in the numerical solutions is numerical
dissipation. In this section, we discuss the sensitivity of various
turbulence diagnostics to the numerics and describe a set of
statistical measures that allow us to assess the quality of different
algorithms we compare. We begin with global averages over
the periodic domain and then continue with analysis of power
spectra. We avoid discussion of density statistics, even though
these are important for numerical star formation studies. That
discussion would be more appropriate in a context of driven
turbulence, where time-averages over many flow snapshots help
to reduce the strong statistical noise associated with the density
(e.g., Kritsuk et al. 2006, 2007). The density statistics in a similar
context have been discussed in detail elsewhere (e.g., Kitsionas
et al. 2009; Price & Federrath 2010).

5.1. Mean Kinetic and Magnetic Energy, rms Mach Numbers

The evolution of the mean kinetic energy is captured perfectly
well by all methods, except for some small (<8% by t = 0.2,
see Table 1) differences that become noticeable at t > 0.12 in
Figure 1. This particular quantity is known to converge rather
early in nonmagnetized compressible turbulence simulations,
and the same is true for super-Alfvénic turbulence (Lemaster &
Stone 2009; Kritsuk et al. 2009b). The velocity power spectrum
P (u, k) ∼ kα has an inertial range slope α ∈ [−2,−5/3] that
depends on the sonic Mach number (see, for instance, Figure 3
below). Because the spectral slope is so steep, the mean specific
kinetic energy density, EK ≡ 〈u2/2〉 = ∫ ∞

0 P (u, k)dk/2, is
strongly dominated by large scales. If the resolution is sufficient

18 http://kitpstarformation07.wikispaces.com/Star+Formation+Test+Problems
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Table 1
Selected Numeric Values for the Decay Test

Code EK/EK,ref
a EM/EM,ref

b 2Ω + 4/3Δc J2d u-bandwidthe B-bandwidthf χ̄(k > 100kmin)g

ENZO 1.001 0.78 0.93 0.92 0.19 0.07 0.60
FLASH 1.000 0.94 0.85 1.38 0.15 0.20 0.27
KT-MHD 1.041 0.85 0.89 1.30 0.20 0.13 0.86
LL-MHD 1.062 0.81 1.02 0.80 0.22 0.10 0.29
PLUTO 1.077 0.92 1.03 1.14 0.20 0.12 0.32
PPML 1.043 0.92 1.20 1.46 0.24 0.20 0.32
RAMSES 1.069 0.87 1.07 1.18 0.24 0.09 0.33
STAGGER 1.005 0.70 1.93 0.79 0.28 0.07 0.31
ZEUS 1.037 0.83 0.76 1.01 0.16 0.10 0.27

Notes.
a Mean specific kinetic energy density at t = 0.2 normalized by the reference solution; see Section 5.1 and Figure 1.
b Mean magnetic energy density at t = 0.2 normalized by the reference solution; see Section 5.1 and Figure 1.
c A proxy for the mean dissipation rate of specific kinetic energy at t = 0.02; see Section 5.2 and Figure 2, left.
d A proxy for the mean dissipation rate of magnetic energy at t = 0.02; see Section 5.2 and Figure 2, right.
e Effective spectral bandwidth for the velocity; see Section 5.4 and Figure 4, left.
f Effective spectral bandwidth for the magnetic field; see Section 5.4 and Figure 4, right.
g Ratio of dilatational-to-solenoidal power averaged over k/kmin > 100 at t = 0.2; see Section 5.5 and Figure 5, right.

to properly capture the structure of large-scale flow in the
computational domain, the energy convergence is achieved.
This is apparently the case in our 5123 simulations; see the
left panels of Figure 1. For the 2563 model (not shown), the
result is very similar. We thus conclude that in the decaying
turbulence problem the mean kinetic energy is not sensitive to
variations in small-scale numerical diffusivity between different
methods.

The mean magnetic energy density, EM ≡ 〈B2/2〉 =∫ ∞
0 P (B, k) dk/2, appears to be more sensitive to variations in

small-scale numerical kinetic and magnetic diffusivity in super-
Alfvénic simulations; see Figure 1, right panels, and Table 1.
Most of the methods show an early-time increase in magnetic en-
ergy, but asymptotically, after saturation is reached, all of them
show very similar decay rates ĖM/EM. The saturated level of
EM in the initial flow snapshot generated with the original, non-
conservative version of the STAGGER code is lower than most
other codes would produce, except for perhaps LL-MHD and
ENZO. To compensate for this deficiency of magnetic energy in
the initial conditions, FLASH and PPML add about 7% to the
initial EM by the time t1 = 0.02, when the first flow snapshot
is recorded. KT-MHD increases EM by ∼4%, PLUTO, ZEUS
and RAMSES add ∼1%–2%. The level of EM reached with the
old STAGGER code is roughly consistent with that of ENZO
and LL-MHD. The new, conservative STAGGER appears to be
more diffusive than all other methods as far as the magnetic
energy density is concerned.

To understand why the magnetic energy levels are different,
one needs to recall that the convergence rate for EM with the
grid resolution is rather slow at 5123. For instance, with PPML,
the saturated levels of EM in driven simulations continuously
grow as grid resolution improves and the convergence is
expected only at 20483 or even higher (Kritsuk et al. 2009b;
Jones et al. 2011).19 The slow convergence of EM in super-
Alfvénic runs is not surprising because of their rather shallow

19 Note that, strictly speaking, the ILES approach involved here does not
imply convergence as grid resolution improves since the effective Reynolds
number is ultimately a function of the grid size (e.g., Kritsuk et al. 2006). At
the same time, an asymptotic regime corresponding to Re = ∞ can potentially
be reached relatively early, at large, but still finite Reynolds numbers. This is
what we probably observe as grid resolution approaches 20483 in
super-Alfvénic simulations.

magnetic energy spectra (see Figure 3 below and note that the
magnetic spectra are plotted noncompensated). In such weakly
magnetized (B0 � brms) isotropic nonhelical flows, turbulence
amplifies the rms magnetic field fluctuations by stretching
and tangling the field lines primarily on small scales until an
equilibrium is reached between the rms field amplification
and dissipation. The saturated level of EM for a given sonic
Mach number, Ms, and mean magnetic field strength, B0, would
naturally depend on the effective magnetic Prandtl number and
on the effective magnetic Reynolds number. We discuss the
relative standing of the methods in terms of Rm and Pm in
the next section and show that the saturation level of magnetic
energy indeed correlates with Rm and Pm. Overall, by t = 0.2,
the deviations of EM from the reference solution defined in
Section 5.4 can be as large as 30%, see Table 1.

Turbulence regimes simulated with different methods dif-
fer slightly in their rms Alfvénic Mach numbers, MA =√

2〈ρu2〉/〈B2〉. We use this proxy for the Alfvénic Mach num-
ber instead of

√
2〈ρu2/B2〉 since in the latter case the locations

where B (nearly) vanishes would produce arbitrarily large con-
tributions to the mean making this measure unstable.

At t = 0.1, the least super-Alfvénic regime is achieved with
FLASH and PPML, followed by PLUTO, KT-MHD, RAMSES,
ZEUS, ENZO, LL-MHD, and the new STAGGER code in order
of increasing MA. Note that the ranking of the methods is
essentially the same as for EM, which, unlike MA, does not
depend on the gas density. This similarity can be explained by
a limited sensitivity of our chosen proxy for MA to correlations
between density and velocity or between density and field
strength (Kritsuk et al. 2009a).

Finally note that while EK decays by a factor >10 during
the course of the simulation, the decay of EM proceeds much
slower, only by a factor of ∼2. Similar to the incompressible
case (Biskamp 2003), in supersonic turbulence the energy ratio
Γ ≡ EK/EM is not constant but decreases with time. While Ms
decreases by a factor of ∼3 from ∼9 to ∼2.6, MA shows a 2.5×
drop from ∼4.5 to ∼1.8. These differences in the decay rates
of kinetic and magnetic energy as well as in the behavior of Ms
and MA can be understood as consequences of self-organization,
i.e., the relaxation of the turbulence towards an asymptotic static
force-free minimum-energy state (e.g., Biskamp 2003).
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5.2. Small-scale Kinetic and Magnetic Diagnostics

Another way to look at the effects of numerical dissipation
is to analyze the time evolution of enstrophy Ω = 1

2 〈|∇ × u|2〉,
dilatation Δ = 〈|∇ · u|2〉, and that of the mean squared
current density J 2 = 〈|∇ × B|2〉. These so-called “small-scale”
quantities show strong oscillations at the grid scale. Their spectra
are dominated by the high wavenumbers, and their PDFs have
extended exponential tails (e.g., Porter et al. 2002). They also
usually display a very slow (if any) convergence with grid
resolution in ILESs due to a strong dependence on Re and
Rm. These measures are related to the total viscous and Ohmic
dissipation rates within the periodic domain (e.g., Kritsuk et al.
2007). For instance, in nonmagnetized compressible turbulence,
which is in many respects similar to the super-Alfvénic case
considered here, the mean dissipation rate of the specific kinetic
energy can be expressed as εK = −(Re)−1(2Ω + 4/3Δ) (e.g.,
Pan et al. 2009).20 Since the global dissipation rates for EK are
very similar for all the methods considered here (see Figure 1),
the relative ranking of their effective Reynolds numbers is fully
determined by the value of 2Ω + 4/3Δ. We can thus use the
dissipation rates plotted in the left panel of Figure 2 to determine
the relative standing of these methods in terms of their Reeff . The
new STAGGER code shows an outstanding result during the first
half of the evolution, t ∈ [0, 0.1], when its Reeff exceeds that of
PPML by up to a factor of ∼1.5. RAMSES, PLUTO, LL-MHD,
ENZO, KT-MHD, FLASH, and ZEUS follow STAGGER and
PPML in order of decreasing effective Reynolds number. See
Table 1 for numeric values of 2Ω + 4/3Δ from different codes
at t = 0.02.

We employ the same approach to get an assessment of the
relative standing of these numerical methods in terms of their
effective magnetic Reynolds number, Rmeff . Figure 2, right
panel shows the mean-squared current density, J2, as a function
of time. The current density is sensitive to both εM and Rmeff ,
since εM ∼ − (Rm)−1 J 2. We expect qualitatively the same
dependency here as for εK and Reeff , but with, perhaps, different
orders of the methods. Note, however, that the dissipation rates
and saturated levels of magnetic energy are not the same for
different methods as can be seen in Figure 1, right panel.
PPML shows the highest Rmeff , followed by FLASH, KT-MHD,
RAMSES, PLUTO, ZEUS, ENZO, LL-MHD, and STAGGER.
Note that the order in which the methods follow each other in the
right panel of Figure 2 is the same as in the EM plot in Figure 1;
see also Table 1. Thus, Rmeff and EM are positively correlated.
We will explore this correlation further in Sections 5.3 and 5.4,
where we analyze the power spectra of kinetic and magnetic
energy and measure the effective bandwidth of the methods.

5.3. Power Spectra

Figure 3 shows power spectra of the velocity and magnetic
energy at t = 0.02, 0.06, and 0.2. The spectra obtained at
5123 demonstrate a very good agreement with each other up to
log10 k/kmin ∼ 1.2 and slightly diverge at higher wavenumbers.
This means that numerical dissipation strongly affects the scales
smaller or equal to ∼16 grid cells in supersonic turbulence
simulations with our best methods.

The new STAGGER code shows a very extended spec-
trum at t = 0.02 with an asymptotic slope of −5/3 up to
log10 k/kmin � 2. This slope is not preserved, however, for

20 Strictly speaking, this is only valid for compressible Navier–Stokes
turbulence assuming zero bulk viscosity, i.e., for ideal monoatomic gases.

the whole duration of the simulation. By t = 0.2, when af-
ter many integration time steps the sonic Mach number drops to
∼2.5, the spectrum looses some high-k power and progressively
bends down at log10 k/kmin � 1.5 leaving behind PLUTO,
RAMSES, PPML, and LL-MHD. A close inspection of the ve-
locity spectra shows that numerical diffusion in ZEUS, FLASH,
KT-MHD, and ENZO is somewhat stronger than in the rest of the
grid-based codes and affects the velocities at lower wavenum-
bers. Besides the new STAGGER code, RAMSES, PLUTO,
PPML, and LL-MHD are the least diffusive codes. The mag-
netic energy spectra display similar variations, but the ranking
of methods is different. Here FLASH and PPML show very
low magnetic diffusivity, while RAMSES, ZEUS, STAGGER,
LL-MHD, and ENZO are more diffusive and KT-MHD stays in
between.

5.4. Effective Spectral Bandwidth

In order to highlight variations in the power spectra obtained
with different methods, we follow the procedure developed in
Lele et al. (2009) and Johnsen et al. (2010) for compressible
Navier–Stokes turbulence at moderate Mach numbers. We have
seen that PPML is one of the least diffusive methods here,
so we declare the 10243 PPML solution filtered with a low-
pass Gaussian filter down to 2563 to be “exact” and call it the
reference solution. We then plot power spectra compensated by
the spectrum of this reference solution for the first snapshot at
t = 0.02, see Figure 4. We set tolerance at a level of ±25%
from the reference solution and define the spectral bandwidth
of a method as the fraction of the Nyquist frequency where the
compensated spectrum deviates by more than 25% from the
reference solution. While this definition is rather arbitrary, it
helps to establish a convenient quantitative measure to assert
the performance of numerical methods for the turbulence decay
test, see Table 1 for numeric values.

The left panel of Figure 4 shows the compensated velocity
spectra. STAGGER, PPML, and RAMSES have the highest
spectral bandwidth in velocity. The second position is shared by
LL-MHD, PLUTO, KT-MHD, and ENZO. ZEUS and FLASH
show a similar velocity bandwidth. RAMSES and KT-MHD
show a small bump at log10 k/kmin ∈ [0.6, 1.1] reminiscent of
the bottleneck effect, while the STAGGER and PPML spectra
decrease monotonically.

The right panel of Figure 4 shows the compensated magnetic
energy spectra. The situation here is quite different. First, unlike
the velocity spectra, the magnetic energy spectra start to bend
down from the reference solution rather early. This is expected
because of the slow convergence of EM with grid resolution,
as we discussed earlier. FLASH and PPML demonstrate the
highest bandwidth, KT-MHD is in the middle, PLUTO, ZEUS,
LL-MHD, ENZO, and RAMSES are very similar to each other
and show a somewhat higher magnetic diffusivity. At 2563,
the spectral bandwidth of our best MHD codes is ∼0.3 for
the velocities and ∼0.2 for the magnetic energy. If we were
dealing with properly converged solutions obtained from a
direct numerical simulation as in Johnsen et al. (2010), that
would mean that numerical dissipation strongly affects the
wavenumbers down to at least (0.2–0.3)kN. This is not however
exactly the case here due to the adopted ILES approach, see
footnote 17.

5.5. Dilatational versus Solenoidal Modes

We have discussed above how the numerical methods differ
in their kinetic and magnetic diffusivity. This aspect plays an
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Figure 1. Time evolution of the mean specific kinetic energy (top left), magnetic energy (top right), and sonic (bottom left) and Alfvénic (bottom right) rms Mach
numbers at a grid resolution of 5123 cells. Note that the kinetic energy and sonic Mach number are rather insensitive to the details of numerical dissipation while the
evolution of magnetic energy and Alfvénic Mach number display significant dependence on the numerical magnetic diffusivity.
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Figure 2. Time evolution of −εKReeff = 2Ω + 4/3Δ defined in Section 5.2 (left) and the mean-squared current, J 2 = 〈|∇ ×B|2〉 (right). These “small-scale” measures
of turbulent fluctuations are sensitive to the details of numerical diffusivity and highlight differences between the methods.

important role in simulations involving small-scale turbulent
dynamo. There Pm serves as a control parameter and the dynamo
would only operate at Pm > Pmcrit (Brandenburg & Nordlund
2011).

In this section, we look at how different methods treat
dilatational and solenoidal components of the velocity field on
small scales. We decompose the velocity fields into the potential
(curl-free) and rotational (solenoidal) components, u = ud + us,
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Figure 3. Power spectra of the velocity (left panels) and magnetic energy (right panels) on a 5123 grid for flow snapshots 1, 3, and 10 at t = 0.02, 0.06, and 0.2
(top-to-bottom), respectively. The velocity spectra are compensated with k5/3, while there is no compensation for the magnetic energy spectra. Note that the ordinate
scale is not always the same for different time instances.

using Helmholtz decomposition. We compute power spectra,
P (ud, k) and P (us, k), and define the dilatational-to-solenoidal
ratio as χ (k) ≡ P (ud, k)/P (us, k). Peculiarities in the small-
scale χ (k) ratio have a potential to affect various turbulence
statistics (e.g., the density PDF) and limit (or even eliminate)
the extent of the inertial range in simulations. These features
cannot be captured by either the small-scale kinetic diagnostics
discussed in Section 5.2 or by the power spectra discussed in
Section 5.3. We present χ (k) for snapshots 1 and 10 (t = 0.02
and 0.2) in the left and right panels of Figure 5, respectively.

Table 1 gives numeric values for the average dilatational-to-
solenoidal ratio, χ̄ (k/kmin > 100), at wavenumbers above
100kmin in the 5123 models at t = 0.2.

First, note a very good agreement between all the methods
in the early snapshot at low wavenumbers, log10 k/kmin < 1.3,
with χ (k/kmin = 10) ≈ 0.47. An overall ratio of 1:2 is ex-
pected for super-Alfvénic turbulence at high Mach numbers
(Kritsuk et al. 2010; Federrath et al. 2010). As the turbulence
decays, the sonic Mach number drops down to Ms ∼ 2.7 by
t = 0.2 and the ratio decreases to χ (k/kmin = 10) ≈ 0.33, as
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Figure 4. Compensated power spectra of the velocity (left panel) and magnetic energy (right panel) for the first flow snapshot at t = 0.02 from the 2563 simulations.
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Figure 5. Ratio of dilatational-to-solenoidal power in velocity spectra, χ (k), for the first (left panel) and the last (right panel) flow snapshots from the 5123 simulations
at t1 = 0.02 and t10 = 0.2, respectively.

expected. In the inertial range, χ (k) is known to be a slowly
decreasing function of the wavenumber (Kritsuk et al. 2007,
2010) and this behavior is nicely captured by most of the
codes. There are slight differences in the χ (k) levels between
different methods at t = 0.2 with ZEUS and FLASH being
slightly ahead of the other codes in damping the dilatational
modes at high wavenumbers. Otherwise, the results from dif-
ferent methods look very similar, although ENZO, KT-MHD,
and STAGGER start to deviate somewhat from the rest of the
codes at relatively low wavenumbers, log10 k/kmin ∼ 1.5. Also
KT-MHD and ENZO produce unusually high χ values at the
Nyquist wavenumber. For instance, KT-MHD has χ (kN) ≈ 1.25
and 1.5 at t = 0.02 and 0.2, respectively. This indicates that
perhaps some spurious compressible fluctuations are present at
scales k � kN/8 in simulations carried out with these codes. The
small-scale oscillations of the KT-MHD code are likely to be
caused by the way the CT scheme is implemented (R. Kissmann
2010, private communication). The observed compressible arti-
facts can probably be reduced to a large extent by using the CT
approach proposed by Londrillo & del Zanna (2004).

6. DISCUSSION

One is tempted to try to sort these nine methods into some
well-ordered set. This is, however, an impossible task, as no

single solver consistently outperformed all others on all diag-
nostics. In this discussion, we will restrict our focus to dis-
cussing kinematic and magnetic dissipation, as measured by the
diagnostics presented here. This leaves out other potentially im-
portant diagnostics, such as the loop advection test of Gardiner
& Stone (2005). We are also ignoring other salient features,
such as computational cost (in memory and time to solution),
ease or feasibility of extending the solver to different physical or
numerical scenarios, or quality of documentation, all of which
go into the selection of a code package. The final result is that
all codes performed reasonably well on the task. There is no
single silver bullet that determines the performance of a given
solver; good quality results can be achieved through a variety of
means, and dissipation can be introduced in a variety of places.

All MHD algorithms used in this work are extensions of a
previously established hydrodynamic algorithm. In general, five
basic features determine the operation of a numerical scheme,
base method (most prominently spatial order of accuracy), MHD
extension, artificial viscosity, time integration, and directional
splitting. In this section, we will classify each code based on
these parameters and discuss trends within each feature. In
Section 6.1, we discuss the spatial order of accuracy, which
seems to be the dominant factor in determining performance.
In Section 6.2, we will discuss artificial viscosity and source
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Table 2
Solver Design Specifications for the Eulerian Methodsa

Name Base Schemeb Spatial Orderc Source Termsd MHDe Time Integrationf Directional Splittingg

ENZO FV, HLL Second Dedner Dedner Second-order RK Direct
FLASH FV, HLLD Second � Derivative Third-order CT Forward Euler ⊥ Reconstruction
KT-MHD FD, CWENO Third KT Third-order CT Fourth-order RK Direct
LL-MHD FV, HLLD Second None Athena CT Forward Euler Split
PLUTO FV, HLLD Third Powell Powell Fourth-order RK Direct
PPML FV, HLLD Third None Athena CT Forward Euler ⊥ Reconstruction
RAMSES FV, HLLD Second None 2D HLLD CT Forward Euler ⊥ Reconstruction
STAGGER FD, Stagger Sixth Tensor Staggered CT Third-order Hyman Direct
ZEUS FD, van Leer Second von Neumann MOC-CT Forward Euler Split

Notes.
a See Section 3 and the indicated sections on each topic for more information.
b Base method. FD for finite difference, FV for finite volume. FV techniques have the Riemann solver listed, Section 6.3.
c Spatial order of accuracy, Section 6.1.
d Artificial Viscosity, Section 6.2. “� Derivative” indicates presence of terms proportional to the longitudinal derivative of the magnetic field.
e MHD method, Section 6.4.
f Time integration method, Section 6.6.3.
g Multidimensional technique, Section 6.6.2. “⊥ Reconstruction” indicates presence of transverse derivatives in the interface reconstruction.

terms that behave as a viscosity. These features also seem
to have considerable impact on the dissipation properties,
as one would expect. In Section 6.3, we will classify and
discuss other properties of the base hydrodynamical scheme.
In Section 6.4, we will discuss the performance of various
MHD extension methods. In Section 6.5, we will discuss three
closely related schemes and discuss how seemingly small details
can dramatically effect the results. In Section 6.6, we will
discuss directional splitting, time integration, and reconstructed
variables. These seem to have a less dramatic impact on the
overall performance, as measured by the diagnostics. See Table 2
for a summary of these solver configuration details.

We refer the reader to the excellent books by Toro (1999),
Laney (1998), and LeVeque (2002) and the method papers cited
in Section 3 for the details of each numerical scheme. We will
not be expanding on any details except where necessary.

6.1. Spatial Order of Accuracy

High spatial order of accuracy seems to be the salient feature
of the least dissipative codes, though there are many factors
in each method that can improve or degrade performance.
STAGGER has the highest spatial order, 6, and this is reflected
most notably in Figure 2, left panel, where its effective Reynolds
number is significantly higher than the other methods, and
Figure 3, left panel, where the inertial range of the power
spectrum extends much further than the others. The third-order
methods are PPML, PLUTO, KT-MHD, and the electric field
construction of FLASH. These four methods show the highest
magnetic spectral bandwidth, and are the top performers in
the effective magnetic Reynolds number and magnetic power
spectrum. However, other effects, most likely viscosity, keep
these third-order methods from having the lowest dissipation
among all statistics. The remaining methods (ZEUS, RAMSES,
LL-MHD, ENZO, and the base hydro scheme of FLASH)
are second order spatially. These codes tend to show more
dissipation over the third-order methods.

There are two notable exceptions to this trend. The first can be
seen in the spectral bandwidth plot, in which RAMSES (second
order spatially) performs better than some third-order methods,
though this may be due to other effects (see Section 6.5).
The second exception can be seen in the top curve of the

effective Reynolds number, corresponding to the STAGGER
method. The initial conditions were generated with an early
version of STAGGER, but continued with a version that used
conservative variables and different settings for the artificial
viscosity. As both methods are sixth order spatially, the increase
in effective Reynolds number demonstrates that it is not spatial
accuracy alone that determines dissipation properties. This will
be discussed further in Section 6.2. Note that here we refer only
to the formal spatial order of accuracy for the reconstruction or
interpolation of each scheme. The actual convergence properties
of each scheme, once time integration, spatial reconstruction,
etc. have been taken into account, must be measured as a
function of time and/or space resolution. This is beyond the
scope of this work.

6.2. Artificial Viscosity and Source Terms

It is quite typical for numerical schemes to include some form
of artificial viscosity in order to avoid numerical instabilities.
In the case of the Powell et al. (1999) and Dedner et al. (2002)
MHD schemes, source terms proportional to ∇ · B are included
to constrain the effects of divergence, which while not the same
kind of dissipation still have a dissipative effect. In this suite
of simulations, viscosity treatments can be broken coarsely into
three categories: artificial viscosity, ∇ · B motivated diffusivity,
and exclusively numerical viscosity. Explicit terms are included
in STAGGER, KT-MHD, ZEUS. Terms due to ∇ · B treatments
are included in PLUTO and ENZO. The four remaining codes
have no explicit artificial viscosity, and dissipation is only due
to the scheme itself (these are FLASH, PPML, RAMSES, and
LL-MHD).

One naively expects that codes with explicit viscosity terms
will have somewhat more dissipation than those without. How-
ever, this is only loosely seen in the results, and it is difficult
to disentangle dissipative terms from other code differences.
STAGGER gives the most noticeable example of the effects of
dissipation, namely the large gap between its velocity dissipa-
tion, which is quite low, and its magnetic dissipation, which is
quite a bit higher than other codes on most metrics. It is also
possible that the fine tuning of the magnetic and kinematic ar-
tificial diffusivity, which has maximized the apparent inertial
range, has altered the non-local coupling of MHD waves in a
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manner that still leaves the dissipation relatively high in the in-
ertial range. It is reasonable to isolate codes based on spatial
order of accuracy in order to compare viscosity results. Among
the third-order codes, PPML, with no explicit viscosity, tends
to have lower dissipation than PLUTO, which has ∇ · B = 0
motivated source terms, which in turn tends to have lower dissi-
pation than KT-MHD. Then isolating the second-order methods,
the trend somewhat continues, though less robustly. ENZO and
ZEUS tend to show the most velocity dissipation, as measured
by the effective Reynolds number or velocity bandwidth. How-
ever, ENZO is the only second spatial order code with explicit
magnetic dissipation, and it shows more power in the mag-
netic power spectrum than LL-MHD, which has none. RAM-
SES shows the lowest dissipation among the second-order codes
in all metrics except for magnetic spectral bandwidth, in which
ZEUS is slightly higher.

One method (FLASH) includes terms proportional to the
longitudinal derivative of the magnetic field. These terms are
typically omitted from the derivation as they are identically
zero in the one-dimensional version of the equations.

6.3. Base Methods

Eulerian hydro schemes fall broadly into two categories: fi-
nite volume and finite difference. In loosest terms, finite-volume
schemes approximate the integral form of the conservation law,
while finite-difference terms approximate the differential form
of the conservation law. Three of the grid-based codes compared
here are finite difference: STAGGER, KT-MHD, and ZEUS.
The other six are finite-volume methods (ENZO, FLASH,
LL-MHD, PLUTO, PPML, and RAMSES.) Between finite vol-
ume and finite difference, there is no correlation with perfor-
mance. This is best illustrated in the left panel of Figure 2. The
code with the highest effective Reynolds number is STAGGER,
and with the lowest is ZEUS, and both are finite-difference
methods. Here we will discuss some common features within
each category of methods.

6.3.1. Finite-difference Methods

One of the curses of numerical fluid dynamics is the battle
between accuracy and stability. This seems to be felt somewhat
more strongly by the three finite-difference codes. ZEUS tends
to be more dissipative than other methods, even though it is
formally second order spatially (see, for instance, the effective
Reynolds number in Figure 2, left, or the left panels of Figure 3).
STAGGER has the highest effective fluid Reynolds number, but
the lowest effective magnetic Reynolds number; we believe this
to be a result of the tensor viscosity and its subtle relationship to
the (scalar) magnetic diffusivity. The KT-MHD method suffers
from excessive small-scale compression, likely due to the fact
that CWENO schemes are only essentially non-oscillatory,
trading the possibility of small numerical oscillation near shocks
for very high quality results in smooth regions.

6.3.2. Finite-volume Methods

The six finite-volume methods (ENZO, FLASH, LL-MHD,
PLUTO, PPML, and RAMSES) are all some form of higher-
order extension of Godunov’s method. These methods have the
advantage that they capture shock structures, in principle, ex-
actly. These methods can be broken into two parts; reconstruc-
tion to the interface, and the Riemann solver.

A wide array of Riemann solvers exist in the literature, but
those used in this work are of two families, Roe and HLL. It

is expected from other tests that Roe will perform the best,
though it is subject to instabilities at low density and high Mach
numbers, and HLLD will perform the best of the HLL methods,
as it captures more of the eigenstructure of the equations
than HLL. However, there does not seem to be a correlation
between dissipation and choice of Riemann solver that cannot
be explained by some other mechanism. This is not to say that
there is no difference, merely not one that can be identified by
these data.

The interface reconstruction techniques vary widely among
the six schemes, and can primarily be characterized by details
discussed in other sections. Namely, order of reconstruction,
directional splitting, time integration, and explicit viscosity
terms. They will not be discussed further here.

6.4. MHD Methods

Any MHD algorithm is essentially an established hydrody-
namic algorithm with modifications to include the Lorentz force
in the momentum equation, the induction equation, and some
treatment to minimize the divergence of the magnetic field.
In all cases in this paper, the Lorentz force is incorporated
into the momentum equation directly (rather than through, say,
vector potentials). Two of the codes (ENZO and PLUTO) use
non-exact divergence preservation, namely both treat an extra
wave, in ∇ · B. These methods also include source terms for
Equations (1)–(3) that are set to zero in most methods. This
extra wave is advected and damped in ENZO, while it is simply
advected with the fluid velocity in PLUTO and serves to miti-
gate singularities in the three-dimensional linearized Jacobian.
The rest use a variant of the CT method, wherein the electric
field and magnetic field are treated at the zone edge and face,
respectively, which allows the solenoidal constraint to be kept
zero to machine precision through the curl operator.

One naively expects the two approximate divergence methods
to have somewhat higher dissipation than other codes, as the
primary driver is dissipation. This is to some extent seen in the
data, though PLUTO does not suffer much from this effect as
it still has quite high fluid and magnetic Reynolds numbers.
ENZO, on the other hand, seems to have more dissipation, and
based on its similarity to other spatially second-order codes, the
∇ · B wave seems to be a likely culprit.

Among the CT-based schemes, the results seem to be domi-
nated by first spatial order then the reconstructed variable. Both
PPML and LL-MHD use the electric field reconstruction tech-
nique described in the Athena method of Gardiner & Stone
(2005), but PPML is spatially third order, so has a higher mag-
netic Reynolds number. It should be noted that only the elec-
tric field reconstruction of the Athena method is used by these
methods. FLASH also uses third-order reconstruction, and also
has an extremely large magnetic spectral bandwidth. LL-MHD,
ZEUS, and RAMSES, on the other hand, are all spatially sec-
ond order, but ZEUS uses the method of characteristics (MOC),
which uses the characteristic fields, and RAMSES solves a sec-
ond Riemann problem, both of which prove to better capture the
electric field than the primitive variable reconstruction used in
LL-MHD.

6.5. Three Closely Related Codes

An interesting subset of codes to examine are LL-MHD,
RAMSES, and FLASH. These three codes are the most similar
in terms of their components, and serve to illustrate how small
differences in method details can cause significant differences
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in performance. Each of the three codes uses the second-order
MUSCL-Hancock reconstruction-evolution scheme for compu-
tation of interface states, the HLLD Riemann solver, forward
Euler time integration, and a higher-order CT method. Given
all the similarities, the differences in performance of the three
codes are surprising. This is best shown in the two spectral band-
width plots in Figure 4. The magnetic bandwidth of FLASH, in
Figure 4, right, is the highest of all available codes, as measured
by the wavenumber at which the spectrum crosses 75%, with
log10 k/kmin=1.4. RAMSES and LL-MHD are significantly
lower, both with log10 k/kmin=1.1. The spatial order of accuracy
in the electric field computation is a clear culprit. FLASH uses
a third-order central-difference reconstruction of the electric
fields from the Riemann solver. Both RAMSES and LL-MHD,
on the other hand, use spatially second-order methods, with
RAMSES using a novel two-dimensional Riemann solver, and
LL-MHD using the Athena method. This shows the importance
of spatial reconstruction in capturing flow features. The veloc-
ity bandwidth, in Figure 4, left, is a completely different story:
RAMSES is at the high end of the codes, with log10 k/kmin=1.5,
LL-MHD is in the middle, with log10 k/kmin=1.4, but FLASH is
the lowest of the Eulerian codes, with log10 k/kmin=1.1. This is
most interesting, since the base solvers for each of the codes are
nearly identical. The biggest difference here is the treatment of
directional splitting. RAMSES and FLASH are both direction-
ally unsplit, incorporating transverse derivatives of the Jacobian
in the interface reconstruction as discussed in Section 6.6.2,
while LL-MHD is split using Strang splitting, and does not in-
clude transverse derivatives. This alone does not explain the
ordering, as LL-MHD and RAMSES perform quite similarly
in many velocity statistics. The only other major algorithmic
difference is the inclusion of the longitudinal magnetic deriva-
tives in the FLASH interface reconstruction. It is not obvious
that these terms would cause diffusion in the manner observed,
though they will affect the reconstruction of the interface states.
Finally, each of these methods (indeed all methods described
here) include a number of nonlinear switches that determine
behavior near shocks, among other things, that have not been
explicitly described. Further investigation is required to isolate
these finer details.

Due to the tight coupling between velocity and mag-
netic field in both the momentum and induction equations,
it would not be surprising for the velocity and magnetic
statistics to be coupled, even perhaps in an inverse manner,
through either energy conservation or mode coupling. Thus
the higher spatial order used in the FLASH magnetic re-
construction may, for instance, be more efficient at transfer-
ring kinetic energy to magnetic energy. Further study is re-
quired to definitively pinpoint the cause of differences between
these three codes, but it illustrates the effect of seemingly
minor details having substantial results on the behavior of a
code.

An additional point of interest in the RAMSES behavior
is the excess power seen in the spectral bandwidth plot at
log10 k/kmin ∈ [0.8, 1.2]. This seems to be a manifestation
of what in pure hydrodynamic turbulence is referred to as the
bottleneck. This is typically not seen in simulations of MHD
turbulence at a 5123 resolution, presumably due to additional
effects of non-local MHD mode coupling that allows energy to
be more efficiently transferred to smaller scales. As RAMSES
has a relatively low Prandtl number, it is possible that this extra
energy transfer is not as efficient as in other codes, causing
somewhat inflated spectral bandwidth.

6.6. Other Solver Details

There are several other solver design specifications that have
received considerable attention over the years. Here we present
a discussion of some of the major solver options that have been
examined. While each may be crucial in its own right, they
are not dominant factors determining the dissipation properties
studied here.

6.6.1. Evolved Variables

MHD can be described by three distinct sets of vari-
ables: primitive variables (ρ, u, B, ptot), conserved variables
(ρ, ρu, B, Etot), and the characteristic variables, Rk, which are
the eigenvectors of the Jacobian of the equations, and in some
ways the most physically relevant form of the variables. It has
been shown that in some cases working with the characteris-
tic variables gives superior results to the other two (Balsara
2004). There is some evidence that bears this out in these data.
For instance, the magnetic behavior of ZEUS, in which MOC
traces characteristics to compute the electric field, is generally
less dissipative than LL-MHD, which uses primarily primitive
variables. However, this is not universally the case, and other
factors may prove more important. Such is the case in the veloc-
ity performance of FLASH versus RAMSES, which use spatial
limiting on characteristic and primitive variables, respectively.

6.6.2. Directional Splitting

Computational algorithms have a long history of being de-
veloped as one-dimensional methods. They then must be ex-
tended by some manner to three dimensions. There are essen-
tially three categories of multidimensional techniques employed
by the codes in this study: directly unsplit, directionally split,
and transverse flux methods.

The two directionally split methods (LL-MHD and ZEUS)
employ sequential one-dimensional solutions along each coor-
dinate axis, wherein the partial update of one sweep is used as
the initial data for the following sweep. The order of sweeps in
both methods is permuted to reduce error. In both methods, the
electric field is computed after the three sweeps are finished.

The four “directly unsplit” methods are STAGGER, KT-
MHD, PLUTO, and ENZO. The first two do not rely on
strictly one-dimensional techniques, so they employ fully three-
dimensional evolution by repeated application of the inter-
polation and derivative operators. The ENZO and PLUTO
methods use the Godunov method, which is strictly speaking
one-dimensional as will be discussed below. It applies the al-
gorithm in an unsplit fashion, with the initial state for Riemann
solutions coming from the same data for all three dimensions.
It incorporates multidimensional properties of the flow by way
of the Runge–Kutta integration.

Another unsplit technique, dubbed “transverse reconstruc-
tion” here, is used to incorporate three-dimensional terms into
the finite-volume methods. Godunov’s method is, strictly speak-
ing, one-dimensional, and does not lend itself directly to multidi-
mensional techniques. The underlying one-dimensional method
follows three basic steps: reconstruction of two interface states
at each zone boundary, followed by solution of the Riemann
problem at the zone boundary, and finally using that solution
to compute difference fluxes at the interface to update the field.
Three of the schemes (FLASH, PPML, and RAMSES) intro-
duce the multidimensional terms in the reconstruction of the
interface state, through the addition of terms approximating
gradients of the transverse fluxes, ∂Fy/∂y. The techniques vary
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slightly between the four methods. FLASH and RAMSES use a
linearization of the transverse flux gradient, Ay∂U/∂y, to com-
pute the half step advance in time. Here, Ay is the Jacobian of
the flux, and the derivative is approximated with monotonized
central differences. PLUTO uses a full reconstruction and Rie-
mann solution in the transverse direction. PPML also includes
a linearization of the transverse flux, though it is incorporated
slightly differently, with the transverse flux gradient introduced
in the characteristic invariants, and uses characteristic direction
filtering for upwinding the derivative.

While it is often believed that directional sweeping is a
detriment to the solution quality, the metrics presented in this
work do not show a clear correlation between the different
multidimensional techniques.

6.6.3. Time Integration

In principle, the order of the spatial and temporal integration
should be the same, otherwise the convergence properties of
the scheme will be reduced to the lower of the two. However,
time integration in these cases seems to be dwarfed by other
effects. ENZO is of higher order in time than RAMSES,
but significantly more dissipative. Similarly, PLUTO is higher
order in time than PPML, but typically has higher dissipation,
as well.

7. SUMMARY AND CONCLUSIONS

We have compared nine numerical MHD codes on a decaying
supersonic, super-Alfvénic turbulence test problem with condi-
tions similar to star-forming molecular clouds in the Galaxy.
The codes ENZO, FLASH, KT-MHD, LL-MHD, PLUTO,
PPML, RAMSES, STAGGER, and ZEUS, described in detail in
Section 2, employ a variety of numerical algorithms of vary-
ing order of accuracy, multidimensional and time integration
schemes, shock capturing techniques, and treatment of the
solenoidal constraint on the magnetic field. Together, they rep-
resent a majority of the MHD codes in use in numerical astro-
physics today and therefore sample the current state of the art.
The work presented in this paper is the largest, most comprehen-
sive MHD code comparison on an application-like test problem
to date.

The codes were compared using both integrated and spectral
measures of the velocity and magnetic fields. All nine Eulerian
codes agreed surprisingly well on the kinetic energy decay
rate (Figure 1, top left), which indicates both the robustness
of published predictions (Mac Low et al. 1998; Stone et al.
1998; Lemaster & Stone 2009) as well as the inadequacy of this
particular metric as a discriminant among methods. All nine
Eulerian codes likewise agreed on the magnetic energy decay
rate (Figure 1, top right), but varied on the amplitude of the
peak magnetic energy as this proved sensitive to the effective
magnetic Reynolds number of the simulation, which depends
on the numerical dissipation of the method.

To move beyond simple global energy diagnostics, small-
scale kinetic and magnetic field diagnostics were introduced in
order to empirically measure the effective fluid and magnetic
Reynolds numbers of the various codes. These diagnostics are
based on analytically motivated combinations of the volume
integrated fluid enstrophy, dilatation, and square of the electric
current density (Figure 2). They proved more revealing about
the numerical dissipation present in the various methods, and
motivated a closer investigation using power spectra of the
velocity and magnetic fields. Regarding the latter, the concept

of effective spectral bandwidth (ESB) was introduced as a
quantitative metric for code comparison. The effective spectral
bandwidth is defined as the width in wavenumber space where
the numerical results do not deviate from a reference solution
(typically, a higher resolution simulation) by more than 25%.
The ESB was measured for both the velocity and magnetic
power spectra for all nine codes at reference times during the
decay. A detailed comparison of ESBs leads to several general
conclusions and observations.

1. All codes gave qualitatively the same results, implying that
they are all performing reasonably well and are useful for
scientific investigations.

2. No single code outperformed all the others against all met-
rics, although in general higher-order-accurate methods do
better than lower-order-accurate methods. The lack of a
clear winner stems from the fact that a single MHD code
is a combination of many different algorithms representing
specific design choices, and that many combinations are
possible.

3. The spatial order of accuracy is the primary determinant of
velocity spectral bandwidth and effective Reynolds number.
Higher spatial order correlates to higher spectral bandwidth.
The sixth-order code STAGGER is superior to the third-
order codes PPML, PLUTO, KT-MHD, and FLASH, which
are superior to the second-order codes ZEUS, LL-MHD,
and ENZO.

4. Codes with high velocity spectral bandwidth do not neces-
sarily have high magnetic spectral bandwidth. For example,
the STAGGER code has the highest velocity ESB but the
lowest magnetic ESB. The magnetic ESB is sensitive to the
spatial order of accuracy of the electric field computation,
and is higher in methods that interpolate on characteristic
variables as opposed to primitive variables.

5. The use of explicit artificial viscosity to stabilize shock
waves reduces the velocity spectral bandwidth relative to
methods that do not use artificial viscosity, such as Godunov
methods.

6. The use of explicit divergence cleaning reduces the mag-
netic spectral bandwidth relative to codes that preserve the
solenoidal condition on B exactly (CT methods).

7. Other algorithmic choices such as finite-difference ver-
sus finite-volume discretization, directionally split versus
unsplit updates of the conservations laws, and order of
accuracy of the time integration are less well correlated
with the performance metrics, and therefore appear to be
less important in predicting a code’s behavior on MHD
turbulence.

Observations about specific codes are as follows.

1. The best performers overall are PPML, FLASH, PLUTO,
and RAMSES based on velocity and magnetic Reynolds
numbers and spectral bandwidths.

2. The highest fluid Reynolds number was obtained with the
STAGGER code.

3. The highest magnetic Prandtl number was obtained with
the FLASH code.

4. FLASH is somewhat more diffusive on the hydro part than
its magnetic part, and the reverse is true for the RAMSES
code.

5. The dilatation velocity power spectra of KT-MHD and
ENZO exhibit problematic behavior on small scales that is
likely related to the ways these codes maintain ∇ · B = 0.
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The best performing codes employ a consistently high order
of accuracy for spatial reconstruction of the evolved fields,
transverse gradient interpolation, conservation law update step,
and Lorentz force computation. Three of the four employ
divergence-free evolution of the magnetic field using the CT
method, and all use little to no explicit artificial viscosity. These
would seem to be guidelines for the development of future
schemes. Codes that fall short in one or more of these areas
are still useful, but they must compensate higher numerical
dissipation with higher numerical resolution. A new class of
nearly Lagrangian methods for hydrodynamics has recently
emerged which uses a moving mesh based on Voronoi cells
(Springel 2010). It remains to be seen if this approach can be
generalized to MHD while retaining the beneficial elements of
successful Eulerian schemes.
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