56 research outputs found

    Chemical and Biological Characterization of Particulate Matter (PM 2.5) and Volatile Organic Compounds Collected at Different Sites in the Los Angeles Basin

    Get PDF
    Background: Most studies on air pollution (AP) exposure have focused on adverse health effects of particulate matter (PM). Less well-studied are the actions of volatile organic compounds (VOCs) not retained in PM collections. These studies quantified chemical and biological properties of both PM2.5 and VOCs. Methods: Samples were collected near the Port of Los Angeles (Long Beach, LB), railroads (Commerce, CM), and a pollution-trapping topography-site (San Bernardino, SB). Quantitative assays were conducted: (1) chemical—prooxidant and electrophile content, (2) biological—tumor necrosis factor-α (TNF-α) and heme oxygenase-1 (HO-1) expression (3), VOC modulation of PM effects and (4), activation of the antioxidant response element (ARE) using murine RAW 264.7 macrophages. Results: SB site samples were the most potent in the chemical and biological assays, followed by a CM railroad site. Only PM2.5 exhibited significant proinflammatory responses. VOCs were more potent than PM2.5 in generating anti-inflammatory responses; further, VOC pretreatment reduced PM-associated TNF-α expression. VOCs significantly increased ARE activation compared to their corresponding PM2.5 which remained at background levels. Conclusion: Ambient VOCs are major contributors to adaptive responses that can modulate PM effects, in vitro, and, as such, need to be included in comprehensive assessments of AP

    Has the profile of heart transplantation recipients changed within the last three decades?

    Get PDF
    Heart transplantation remains the most durable treatment for patients with end-stage heart failure refractory to medical treatment. Central elements of the listing criteria for heart transplantation have remained largely unchanged in the last three decades whereas treatment of heart failure has significantly increased survival and reduced disease-related symptoms. It remains unknown whether the improvement of heart failure therapy changed the profile of heart transplantation candidates or affected post-transplant survival. The study investigated a total of 323 heart transplant recipients of the Lausanne University Hospital with 328 transplant operations between 1987 and 2018. Patients were separated into three groups on the basis of availability of heart failure therapy: period 1 (1987-1998; n = 115) when renin-angiotensin system blockade and diuretic treatment were available; period 2 (1999-2010; n = 106) marked by the addition of beta-blocker and mineralocorticoid receptor antagonist treatment in severe heart failure, and the establishment of cardiac defibrillator and resynchronisation therapy; period 3 (2011-2018; n = 107) characterised by the increasing use of ventricular assist devices for bridge to transplantation. The patient characteristics age (all: 53.4 years), male sex (all: 79%) and body mass index (all: 24.5 kg/m2) did not differ between periods. History of arterial hypertension was less prevalent in period 2 (period 1 vs 2 vs 3: 44 vs 28 vs 43%, p = 0.04) whereas other cardiovascular risk factors were equally distributed. Left ventricular ejection fraction, VO2max, and pulmonary vascular resistance were not different between the three periods. The prevalence of ischaemic cardiomyopathy was higher in periods 1 and 3; dilated non-ischaemic cardiomyopathy was more frequent in period 2. Post-transplant 1-year survival was highest in period 3 (1 vs 2 vs 3: 87.2 ± 3.2% vs 70.8 ± 4.4% vs 93.0 ± 2.6%, p always ≤0.02), and the Kaplan-Meier estimates of survivors of the first year post-transplant were not different between the three periods. In descriptive analysis, early mortality was not associated with acknowledged pretransplant predictors of post-transplant mortality. Availability of different medical heart failure treatments did not result in greatly different pretransplant characteristics of heart transplantation recipients across the three periods. This suggests that the maintained central criteria of listing for heart transplantation still identify end-stage heart failure patients with a similar profile. This finding can explain the unchanged overall mortality on condition of 1-year survival across the three periods, since pretransplant characteristics are relevant for long-term survival after heart transplantation

    An entire exon 3 germ-line rearrangement in the BRCA2 gene: pathogenic relevance of exon 3 deletion in breast cancer predisposition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Germ-line mutations in the <it>BRCA1 </it>and <it>BRCA2 </it>genes are major contributors to hereditary breast/ovarian cancer. Large rearrangements are less frequent in the <it>BRCA2 </it>gene than in <it>BRCA1</it>. We report, here, the first total deletion of exon 3 in the <it>BRCA2 </it>gene that was detected during screening of 2058 index cases from breast/ovarian cancer families for <it>BRCA2 </it>large rearrangements. Deletion of exon 3, which is in phase, does not alter the reading frame. Low levels of alternative transcripts lacking exon 3 (Δ3 delta3 transcript) have been reported in normal tissues, which raises the question whether deletion of exon 3 is pathogenic.</p> <p>Methods</p> <p>Large <it>BRCA2 </it>rearrangements were analysed by QMPSF (Quantitative Multiplex PCR of Short Fluorescent Fragments) or MLPA (Multiplex Ligation-Dependent Probe Amplification). The exon 3 deletion was characterized with a "zoom-in" dedicated CGH array to the <it>BRCA2 </it>gene and sequencing. To determine the effect of exon 3 deletion and assess its pathogenic effect, three methods of transcript quantification were used: fragment analysis of FAM-labelled PCR products, specific allelic expression using an intron 2 polymorphism and competitive quantitative RT-PCR.</p> <p>Results</p> <p>Large rearrangements of <it>BRCA2 </it>were detected in six index cases out of 2058 tested (3% of all deleterious <it>BRCA2 </it>mutations). This study reports the first large rearrangement of the <it>BRCA2 </it>gene that includes all of exon 3 and leads to an <it>in frame </it>deletion of exon 3 at the transcriptional level. Thirty five variants in exon 3 and junction regions of <it>BRCA2 </it>are also reported, that contribute to the interpretation of the pathogenicity of the deletion. The quantitative approaches showed that there are three classes of delta3 <it>BRCA2 </it>transcripts (low, moderate and exclusive). Exclusive expression of the delta3 transcript by the mutant allele and segregation data provide evidence for a causal effect of the exon 3 deletion.</p> <p>Conclusion</p> <p>This paper highlights that large rearrangements and total deletion of exon 3 in the <it>BRCA2 </it>gene could contribute to hereditary breast and/or ovarian cancer. In addition, our findings suggest that, to interpret the pathogenic effect of any variants of exon 3, both accurate transcript quantification and co-segregation analysis are required.</p

    Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Introduction: More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loci, no study has comprehensively evaluated the associations of all known BC susceptibility alleles with risk of BC subtypes in BRCA1 and BRCA2 carriers. Methods: We used data from 15,252 BRCA1 and 8,211 BRCA2 carriers to analyze the associations between approximately 200,000 genetic variants on the iCOGS array and risk of BC subtypes defined by estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and triple-negative- (TN) status; morphologic subtypes; histological grade; and nodal involvement. Results: The estimated BC hazard ratios (HRs) for the 74 known BC alleles in BRCA1 carriers exhibited moderate correlations with the corresponding odds ratios from the general population. However, their associations with ER-positive BC in BRCA1 carriers were more consistent with the ER-positive as

    Sex- and age-related differences in the management and outcomes of chronic heart failure: an analysis of patients from the ESC HFA EORP Heart Failure Long-Term Registry

    Get PDF
    Aims: This study aimed to assess age- and sex-related differences in management and 1-year risk for all-cause mortality and hospitalization in chronic heart failure (HF) patients. Methods and results: Of 16 354 patients included in the European Society of Cardiology Heart Failure Long-Term Registry, 9428 chronic HF patients were analysed [median age: 66 years; 28.5% women; mean left ventricular ejection fraction (LVEF) 37%]. Rates of use of guideline-directed medical therapy (GDMT) were high (angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, beta-blockers and mineralocorticoid receptor antagonists: 85.7%, 88.7% and 58.8%, respectively). Crude GDMT utilization rates were lower in women than in men (all differences: P\ua0 64 0.001), and GDMT use became lower with ageing in both sexes, at baseline and at 1-year follow-up. Sex was not an independent predictor of GDMT prescription; however, age >75 years was a significant predictor of GDMT underutilization. Rates of all-cause mortality were lower in women than in men (7.1% vs. 8.7%; P\ua0=\ua00.015), as were rates of all-cause hospitalization (21.9% vs. 27.3%; P\ua075 years. Conclusions: There was a decline in GDMT use with advanced age in both sexes. Sex was not an independent predictor of GDMT or adverse outcomes. However, age >75 years independently predicted lower GDMT use and higher all-cause mortality in patients with LVEF 6445%

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    Get PDF

    Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Abstract Introduction More than 70 common alleles are known to be involved in breast cancer (BC) susceptibility, and several exhibit significant heterogeneity in their associations with different BC subtypes. Although there are differences in the association patterns between BRCA1 and BRCA2 mutation carriers and the general population for several loci, no study has comprehensively evaluated the associations of all known BC susceptibility alleles with risk of BC subtypes in BRCA1 and BRCA2 carriers. Methods We used data from 15,252 BRCA1 and 8,211 BRCA2 carriers to analyze the associations between approximately 200,000 genetic variants on the iCOGS array and risk of BC subtypes defined by estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and triple-negative- (TN) status; morphologic subtypes; histological grade; and nodal involvement. Results The estimated BC hazard ratios (HRs) for the 74 known BC alleles in BRCA1 carriers exhibited moderate correlations with the corresponding odds ratios from the general population. However, their associations with ER-positive BC in BRCA1 carriers were more consistent with the ER-positive associations in the general population (intraclass correlation (ICC) = 0.61, 95% confidence interval (CI): 0.45 to 0.74), and the same was true when considering ER-negative associations in both groups (ICC = 0.59, 95% CI: 0.42 to 0.72). Similarly, there was strong correlation between the ER-positive associations for BRCA1 and BRCA2 carriers (ICC = 0.67, 95% CI: 0.52 to 0.78), whereas ER-positive associations in any one of the groups were generally inconsistent with ER-negative associations in any of the others. After stratifying by ER status in mutation carriers, additional significant associations were observed. Several previously unreported variants exhibited associations at P <10−6 in the analyses by PR status, HER2 status, TN phenotype, morphologic subtypes, histological grade and nodal involvement. Conclusions Differences in associations of common BC susceptibility alleles between BRCA1 and BRCA2 carriers and the general population are explained to a large extent by differences in the prevalence of ER-positive and ER-negative tumors. Estimates of the risks associated with these variants based on population-based studies are likely to be applicable to mutation carriers after taking ER status into account, which has implications for risk prediction

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Abstract Introduction Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects
    corecore