384 research outputs found
The impact of coronary angiography on renal transplant function
Introduction:
There may be reluctance to perform coronary angiography in kidney transplant patients due to perceived risk of iodinated contrast, despite an increased risk of cardiovascular disease compared with the general population.
Aim:
We sought to determine if renal transplant function was adversely affected within 7, 30 and 180âdays of coronary angiography.
Design and methods:
Renal transplant recipients undergoing coronary angiography in a single centre (01/2006â02/2018) were identified retrospectively. Baseline and highest SCr within 7, 30 and 180âdays of coronary angiography were extracted from the electronic patient record. Rise in creatinine >26 micromol/l was considered significant [equivalent to Acute Kidney Injury (AKI) Network criteria stage 1 AKI] and case note review performed to determine circumstance of renal decline.
Results:
There were 127 coronary angiographies conducted in 90 patients: 67.7% were male and mean age was 58.0 (±10.1) years. There was AKI within 7âdays in 18.9% cases, but SCr returned to baseline within 7âdays or there was an alternative explanation for AKI in 83.3% of these. In the remaining four cases, there was progressive decline in renal transplant function. In the absence of critical illness, no patient required dialysis or extended hospital stay for contrast-associated AKI.
Conclusions:
In this cohort of renal transplant recipients undergoing coronary angiography, AKI occurred in a minority of cases, and in more than 95% of such cases this effect was transient, with progressive renal decline a rare and predictable event. Renal transplant should not be regarded as a contraindication to coronary angiography
Measurement of W Polarisation at LEP
The three different helicity states of W bosons produced in the reaction e+
e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W
decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to
measure the polarisation of W bosons, and its dependence on the W boson
production angle. The fraction of longitudinally polarised W bosons is measured
to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and
the second systematic, in agreement with the Standard Model expectation
Search for Anomalous Couplings in the Higgs Sector at LEP
Anomalous couplings of the Higgs boson are searched for through the processes
e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70
GeV < m_H < 190 GeV is explored using 602 pb^-1 of integrated luminosity
collected with the L3 detector at LEP at centre-of-mass energies
sqrt(s)=189-209 GeV. The Higgs decay channels H -> ffbar, H -> gamma gamma, H
-> Z\gamma and H -> WW^(*) are considered and no evidence is found for
anomalous Higgs production or decay. Limits on the anomalous couplings d, db,
Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H
-> gamma gamma and H -> Z gamma decay rates
Measurement of W Polarisation at LEP
The three different helicity states of W bosons produced in the reaction e+
e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W
decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to
measure the polarisation of W bosons, and its dependence on the W boson
production angle. The fraction of longitudinally polarised W bosons is measured
to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and
the second systematic, in agreement with the Standard Model expectation
Neutral-Current Four-Fermion Production in e+e- Interactions at LEP
Neutral-current four-fermion production, e+e- -> ffff is studied in 0.7/fb of
data collected with the L3 detector at LEP at centre-of-mass energies
root(s)=183-209GeV. Four final states are considered: qqvv, qqll, llll and
llvv, where l denotes either an electron or a muon. Their cross sections are
measured and found to agree with the Standard Model predictions. In addition,
the e+e- -> Zgamma* -> ffff process is studied and its total cross section at
the average centre-of-mass energy 196.6GeV is found to be 0.29 +/- 0.05 +/-
0.03 pb, where the first uncertainty is statistical and the second systematic,
in agreement with the Standard Model prediction of 0.22 pb. Finally, the mass
spectra of the qqll final states are analysed to search for the possible
production of a new neutral heavy particle, for which no evidence is found
Measurement of Exclusive rho+rho- Production in Mid-Virtuality Two-Photon Interactions and Study of the gamma gamma* -> rho rho Process at LEP
Exclusive rho+rho- production in two-photon collisions between a quasi-real
photon, gamma, and a mid-virtuality photon, gamma*, is studied with data
collected at LEP at centre-of-mass energies root(s)=183-209GeV with a total
integrated luminosity of 684.8pb^-1. The cross section of the gamma gamma* ->
rho+ rho- process is determined as a function of the photon virtuality, Q^2,
and the two-photon centre-of-mass energy, W_gg, in the kinematic region:
0.2GeV^2 < Q^2 <0.85GeV^2 and 1.1GeV < W_gg < 3GeV. These results, together
with previous L3 measurements of rho0 rho0 and rho+ rho- production, allow a
study of the gamma gamma* -> rho rho process over the Q^2-region 0.2GeV^2 < Q^2
< 30 GeV^2
Bose-Einstein Correlations of Neutral and Charged Pions in Hadronic Z Decays
Bose-Einstein correlations of both neutral and like-sign charged pion pairs
are measured in a sample of 2 million hadronic Z decays collected with the L3
detector at LEP. The analysis is performed in the four-momentum difference
range 300 MeV < Q < 2 GeV. The radius of the neutral pion source is found to be
smaller than that of charged pions. This result is in qualitative agreement
with the string fragmentation model
Z Boson Pair-Production at LEP
Events stemming from the pair-production of Z bosons in e^+e^- collisions are
studied using 217.4 pb^-1 of data collected with the L3 detector at
centre-of-mass energies from 200 GeV up to 209 GeV. The special case of events
with b quarks is also investigated.
Combining these events with those collected at lower centre-of-mass energies,
the Standard Model predictions for the production mechanism are verified. In
addition, limits are set on anomalous couplings of neutral gauge bosons and on
effects of extra space dimensions
Measurement of the Running of the Electromagnetic Coupling at Large Momentum-Transfer at LEP
The evolution of the electromagnetic coupling, alpha, in the
momentum-transfer range 1800GeV^2 < -Q^2 < 21600GeV^2 is studied with about
40000 Bhabha-scattering events collected with the L3 detector at LEP at
centre-of-mass energies 189-209GeV. The running of alpha is parametrised as:
alpha(Q^2) = alpha_0/(1-C Delta alpha(Q^2)), where alpha_0=\alpha(Q^2=0) is the
fine-structure constant and C=1 corresponds to the evolution expected in QED. A
fit to the differential cross section of the e+e- ->e+e- process for scattering
angles in the range |cos theta|<0.9 excludes the hypothesis of a constant value
of alpha, C=0, and validates the QED prediction with the result: C = 1.05 +/-
0.07 +/- 0.14, where the first uncertainty is statistical and the second
systematic
Proton-Antiproton Pair Production in Two-Photon Collisions at LEP
The reaction e^+e^- -> e^+e^- proton antiproton is studied with the L3
detector at LEP. The analysis is based on data collected at e^+e^-
center-of-mass energies from 183 GeV to 209 GeV, corresponding to an integrated
luminosity of 667 pb^-1. The gamma gamma -> proton antiproton differential
cross section is measured in the range of the two-photon center-of-mass energy
from 2.1 GeV to 4.5 GeV. The results are compared to the predictions of the
three-quark and quark-diquark models
- âŠ