113 research outputs found

    A community-powered search of machine learning strategy space to find NMR property prediction models

    Get PDF
    The rise of machine learning (ML) has created an explosion in the potential strategies for using data to make scientific predictions. For physical scientists wishing to apply ML strategies to a particular domain, it can be difficult to assess in advance what strategy to adopt within a vast space of possibilities. Here we outline the results of an online community-powered effort to swarm search the space of ML strategies and develop algorithms for predicting atomic-pairwise nuclear magnetic resonance (NMR) properties in molecules. Using an open-source dataset, we worked with Kaggle to design and host a 3-month competition which received 47,800 ML model predictions from 2,700 teams in 84 countries. Within 3 weeks, the Kaggle community produced models with comparable accuracy to our best previously published "in-house" efforts. A meta-ensemble model constructed as a linear combination of the top predictions has a prediction accuracy which exceeds that of any individual model, 7-19x better than our previous state-of-the-art. The results highlight the potential of transformer architectures for predicting quantum mechanical (QM) molecular properties

    Infrared spectroscopy characterization of normal and lung cancer cells originated from epithelium

    Get PDF
    The vibrational spectral differences of normal and lung cancer cells were studied for the development of effective cancer cell screening by means of attenuated total reflection infrared spectroscopy. The phosphate monoester symmetric stretching νs(PO32-) band intensity at ~970 cm-1 and the phosphodiester symmetric stretching νs(PO2-) band intensity at ~1,085 cm-1 in nucleic acids and phospholipids appeared to be significantly strengthened in lung cancer cells with respect to the other vibrational bands compared to normal cells. This finding suggests that more extensive phosphorylation occur in cancer cells. These results demonstrate that lung cancer cells may be prescreened using infrared spectroscopy tools

    Electromagnetic Dissociation as a Tool for Nuclear Structure and Astrophysics

    Get PDF
    Coulomb dissociation is an especially simple and important reaction mechanism. Since the perturbation due to the electric field of the (target) nucleus is exactly known, firm conclusions can be drawn from such measurements. Electromagnetic matrixelements and astrophysical S-factors for radiative capture processes can be extracted from experiments. We describe the basic elements of the theory of nonrelativistic and relativistic electromagnetic excitation with heavy ions. This is contrasted to electromagnetic excitation with leptons (electrons), with their small electric charge and the absence of strong interactions. We discuss various approaches to the study of higher order electromagnetic effects and how these effects depend on the basic parameters of the experiment. The dissociation of neutron halo nuclei is studied in a zero range model using analytical methods. We also review ways how to treat nuclear interactions, show their characteristics and how to avoid them (as far as possible). We review the experimental results from a theoretical point of view. Of special interest for nuclear structure physics is the appearence of low lying electric dipole strength in neutron rich nuclei. Applications of Coulomb dissociation to some selected radiative capture reactions relevant for nuclear astrophysics are discussed. The Coulomb dissociation of 8B is relevant for the solar neutrino problem. The potential of the method especially for future investigations of (medium) heavy exotic nuclei for nuclear structure and astrophysics is explored. We conclude that the Coulomb dissociation mechanism is theoretically well understood, the potential difficulties are identified and can be taken care of. Many interesting experiments have been done in this field and many more are expected in the future.Comment: review article accepted for publication in "Prog. in Part. and Nucl. Physics", 75 pages, 31 figure

    The Early Royal Society and Visual Culture

    Get PDF
    Recent studies have fruitfully examined the intersection between early modern science and visual culture by elucidating the functions of images in shaping and disseminating scientific knowledge. Given its rich archival sources, it is possible to extend this line of research in the case of the Royal Society to an examination of attitudes towards images as artefacts –manufactured objects worth commissioning, collecting and studying. Drawing on existing scholarship and material from the Royal Society Archives, I discuss Fellows’ interests in prints, drawings, varnishes, colorants, images made out of unusual materials, and methods of identifying the painter from a painting. Knowledge of production processes of images was important to members of the Royal Society, not only as connoisseurs and collectors, but also as those interested in a Baconian mastery of material processes, including a “history of trades”. Their antiquarian interests led to discussion of painters’ styles, and they gradually developed a visual memorial to an institution through portraits and other visual records.AH/M001938/1 (AHRC
    • …
    corecore