249 research outputs found

    Real-Time Distributed Aircraft Simulation through HLA

    Get PDF
    This paper presents some ongoing researches carried out in the context of the PRISE (Research Platform for Embedded Systems Engineering) Project. This platform has been designed to evaluate and validate new embedded system concepts and techniques through a special hardware and software environment. Since many actual embedded equipments are not available, their corresponding behavior is simulated using the HLA architecture, an IEEE standard for distributed simulation, and a Run-time infrastructure called CERTI and developed at ONERA. HLA is currently largely used in many simulation applications, but the limited performances of the RTIs raises doubts over the feasibility of HLA federations with real-time requirements. This paper addresses the problem of achieving real-time performances with HLA. Several experiments are discussed using well-known aircraft simulators such as the Microsoft Flight Simulator, FlightGear, and X-plane connected with the CERTI Run-time Infrastructure. The added value of these activities is to demonstrate that according to a set of innovative solutions, HLA is well suited to achieve hard real time constraints

    A generic frequency dependence for the atmospheric tidal torque of terrestrial planets

    Full text link
    Thermal atmospheric tides have a strong impact on the rotation of terrestrial planets. They can lock these planets into an asynchronous rotation state of equilibrium. We aim at characterizing the dependence of the tidal torque resulting from the semidiurnal thermal tide on the tidal frequency, the planet orbital radius, and the atmospheric surface pressure. The tidal torque is computed from full 3D simulations of the atmospheric climate and mean flows using a generic version of the LMDZ general circulation model (GCM) in the case of a nitrogen-dominated atmosphere. Numerical results are discussed with the help of an updated linear analytical framework. Power scaling laws governing the evolution of the torque with the planet orbital radius and surface pressure are derived. The tidal torque exhibits i) a thermal peak in the vicinity of synchronization, ii) a resonant peak associated with the excitation of the Lamb mode in the high frequency range, and iii) well defined frequency slopes outside these resonances. These features are well explained by our linear theory. Whatever the star-planet distance and surface pressure, the torque frequency spectrum -- when rescaled with the relevant power laws -- always presents the same behaviour. This allows us to provide a single and easily usable empirical formula describing the atmospheric tidal torque over the whole parameter space. With such a formula, the effect of the atmospheric tidal torque can be implemented in evolutionary models of the rotational dynamics of a planet in a computationally efficient, and yet relatively accurate way.Comment: Accepted for publication in Astronomy & Astrophysics, 23 pages, 9 figure

    Negative regulation of EB1 turnover at microtubule plus ends by interaction with microtubule-associated protein ATIP3

    Get PDF
    International audienceThe regulation of microtubule dynamics is critical to ensure essential cell functions. End binding protein 1 (EB1) is a master regulator of microtubule dynamics that autonomously binds an extended GTP/GDP-Pi structure at growing microtubule ends and recruits regulatory proteins at this location. However, negative regulation of EB1 association with growing microtubule ends remains poorly understood. We show here that microtubule-associated tumor suppressor ATIP3 interacts with EB1 through direct binding of a non-canonical proline-rich motif. Results indicate that ATIP3 does not localize at growing microtubule ends and that in situ ATIP3-EB1 molecular complexes are mostly detected in the cytosol. We present evidence that a minimal EB1-interacting sequence of ATIP3 is both necessary and sufficient to prevent EB1 accumulation at growing microtubule ends in living cells and that EB1-interaction is involved in reducing cell polarity. By fluorescence recovery of EB1-GFP after photobleaching, we show that ATIP3 silencing accelerates EB1 turnover at microtubule ends with no modification of EB1 diffusion in the cytosol. We propose a novel mechanism by which ATIP3-EB1 interaction indirectly reduces the kinetics of EB1 exchange on its recognition site, thereby accounting for negative regulation of microtubule dynamic instability. Our findings provide a unique example of decreased EB1 turnover at growing microtubule ends by cytosolic interaction with a tumor suppressor. INTRODUCTION Microtubules (MTs) are polarized structures that continuously switch between periods of polymerization and depolymerization at their growing (plus) ends. This process, termed MT dynamic instability, allows rapid reorganization of the MT cytoskeleton during essential cell functions such as cell polarity and migration, mitosi

    The Phase A study of the ESA M4 mission candidate ARIEL

    Get PDF
    © 2018, The Author(s). ARIEL, the Atmospheric Remote sensing Infrared Exoplanet Large survey, is one of the three M-class mission candidates competing for the M4 launch slot within the Cosmic Vision science programme of the European Space Agency (ESA). As such, ARIEL has been the subject of a Phase A study that involved European industry, research institutes and universities from ESA member states. This study is now completed and the M4 down-selection is expected to be concluded in November 2017. ARIEL is a concept for a dedicated mission to measure the chemical composition and structure of hundreds of exoplanet atmospheres using the technique of transit spectroscopy. ARIEL targets extend from gas giants (Jupiter or Neptune-like) to super-Earths in the very hot to warm zones of F to M-type host stars, opening up the way to large-scale, comparative planetology that would place our own Solar System in the context of other planetary systems in the Milky Way. A technical and programmatic review of the ARIEL mission was performed between February and May 2017, with the objective of assessing the readiness of the mission to progress to the Phase B1 study. No critical issues were identified and the mission was deemed technically feasible within the M4 programmatic boundary conditions. In this paper we give an overview of the final mission concept for ARIEL as of the end of the Phase A study, from scientific, technical and operational perspectives. ispartof: Experimental Astronomy vol:46 issue:1 pages:211-239 status: publishe

    Planetary Exploration Horizon 2061 Report, Chapter 3: From science questions to Solar System exploration

    Full text link
    This chapter of the Planetary Exploration Horizon 2061 Report reviews the way the six key questions about planetary systems, from their origins to the way they work and their habitability, identified in chapter 1, can be addressed by means of solar system exploration, and how one can find partial answers to these six questions by flying to the different provinces to the solar system: terrestrial planets, giant planets, small bodies, and up to its interface with the local interstellar medium. It derives from this analysis a synthetic description of the most important space observations to be performed at the different solar system objects by future planetary exploration missions. These observation requirements illustrate the diversity of measurement techniques to be used as well as the diversity of destinations where these observations must be made. They constitute the base for the identification of the future planetary missions we need to fly by 2061, which are described in chapter 4. Q1- How well do we understand the diversity of planetary systems objects? Q2- How well do we understand the diversity of planetary system architectures? Q3- What are the origins and formation scenarios for planetary systems? Q4- How do planetary systems work? Q5- Do planetary systems host potential habitats? Q6- Where and how to search for life?Comment: 107 pages, 37 figures, Horizon 2061 is a science-driven, foresight exercise, for future scientific investigation

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    • 

    corecore