

To cite this document: Gervais, Clément and Chaudron, Jean-Baptiste and Siron,

Pierre and Leconte, Régine and Saussié, David Real-Time Distributed Aircraft

Simulation through HLA. (2012) In: 16th IEEE/ACM International Symposium

on Distributed Simulation and Real Time Applications DS-RT 2012, 25-27 Oct

2012, Dublin, Ireland.

Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 6844

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@inp-toulouse.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12043815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr

Real-Time Distributed Aircraft Simulation through HLA

Clément Gervais, Jean-Baptise Chaudron,
Pierre Siron, Régine Leconte

Mathematics, Computer Science and Control Theory Department
lnstitut Supérieur de l’Aéronautique et de l’Espace (ISAE)

Toulouse, France
Email: pierre.siron@isae.fr

David Saussié
Electrical Engineering Department
École Polytechnique de Montréal

Montréal,Canada
Email: david.saussie@polymtl.ca

Abstract—This paper presents some ongoing researches car-
ried out in the context of the PRISE (Research Platform for
Embedded Systems Engineering) Project. This platform has
been designed to evaluate and validate new embedded system
concepts and techniques through a special hardware and soft-
ware environment. Since many actual embedded equipments
are not available, their corresponding behavior is simulated
using the HLA architecture, an IEEE standard for distributed
simulation, and a Run-time infrastructure called CERTI and
developed at ONERA. HLA is currently largely used in many
simulation applications, but the limited performances of the
RTIs raises doubts over the feasibility of HLA federations with
real-time requirements. This paper addresses the problem of
achieving real-time performances with HLA. Several experi-
ments are discussed using well-known aircraft simulators such
as the Microsoft Flight Simulator, FlightGear, and X-plane
connected with the CERTI Run-time Infrastructure. The added
value of these activities is to demonstrate that according to a
set of innovative solutions, HLA is well suited to achieve hard
real time constraints.

Keywords-real-time HLA; aircraft simulation; CERTI.

I. INTRODUCTION

Distributed computing paradigm proposes a high perfor-
mance solution thanks to advances in network technologies.
Different programs located on several computers interact all
together in order to achieve a global common goal. However,
designers and developers of distributed software applications
have to face several problems such as heterogeneity of the
various hardware components as well as both operating sys-
tems and communication protocols. Development of middle-
ware standards like CORBA [1] allows to consistently facing
these problems. The term middleware describes a software
agent operating as an intermediary between distributed pro-
cesses. This software must be considered in the domain of
interoperability; it is a connectivity software which enables
the execution of several interacting applications on one or
more linked computers.

Modern flight simulation techniques and implementations
often result in many sophisticated and complex calculations
that require a high level of computing power. Several flight
simulator applications often require their services to be
delivered with respect to a given instant of time (deadline).
This issue constitutes the problematic of real-time systems

which are defined as systems in which the correctness
of the system not only depends on the logical results of
computation, but also on the time at which these results are
produced [2]. Real-time systems are broadly classified into
two categories based on the nature of the deadline, namely,
hard real-time systems, in which the consequences of not
executing a task before its deadline may be catastrophic
and soft real-time systems, in which the utility of results
produced by a task with a soft deadline decreases over time
after the deadline expires. Examples of typical hard real-
time systems are flight control and nuclear plant control.
Telephone switching system and image processing applica-
tions are examples of soft real-time systems. Figure 3 shows
that our application is concerned by both types of real-time
system characteristics.

Traditional standards and middleware architectures are
not suitable for supporting real-time constraints. Real-time
aircraft software and hardware components interconnected
with middleware such as CORBA [3] have led to advances
in current standards to include real-times properties, like
Real-time CORBA [4] or more recently DDS [5]. The main
objective of our work is to use the HLA IEEE 1516-2000
standard [6]–[8] , to develop, interconnect and maintain a
flight simulator. However, works to include real-time speci-
fications and properties to HLA standard are less advanced
than others ones [9]. This article explains how we proceed
to implement and test this simulator and how we validate
real time behavior on our computing platform. The use
of a distributed simulation architecture to study distributed
embedded systems and hardware should provide a more
natural and flexible framework for new researches in the
domain.

II. BACKGROUND

Simulation is a well established technique used in the
man-machine system area for training, evaluation of per-
formance and research. Flight simulation re-creates how an
airplane flies in its environment; it models the dynamic
behavior of the flight vehicle under the action of aerody-
namic, thrust and gravity forces, accordingly to the external
environment characteristics (air density, wind, turbulence...).

To achieve this goal, a flight simulator consists of different
components. The essential one still remains the mathemat-
ical description of the aircraft and its environment; the
more accurate the model, the more realistic and reliable
the simulation will be. Then a digital computer running
a real-time operating system computes this model. The
simulation can finally be completed with input organs (e.g.
yoke-pedal systems, joysticks), display screens, cockpit-like
environment and mechanical devices reproducing the aircraft
motion (e.g. Stewart platform).

We claim that the choice of a distributed standard and
its underlying middleware is an important requirement to
obtain a high fidelity, valid and scalable real-time flight
simulation. This choice implies which operating system,
which programming language and which hardware could be
used for compliance with the middleware. Many studies and
integration simulations are elements of the Airbus indus-
trial process but the different models are proprietary (and
sometimes certified) as well as the Run Time Infrastructure.
Indeed some works focus on the DDS standard for our flight
simulator basis [10]. Other ones, like the authors of the
present paper, choose the HLA standard [11]. The RTI (HLA
underlying middleware) is the distributed software used
for interconnecting various federates to a global federation
execution. In [11], the authors use the RTI-NG [12] which
was the first RTI developed and used by the US Department
of Defense; this RTI is no longer maintained. Since then,
several approaches have been investigated to add real-time
properties to HLA standard and underlying software RTI.
These works include optimized time management services
[13], multi-threaded synchronous processes for RTI [13]–
[15] and global scheduling services [14], [15]. These differ-
ent techniques allow an improved use of system resources,
better scalability and also a higher reactivity of services
provided by the RTI.

III. HARDWARE AND SOFTWARE COMPONENTS

Our work takes place in a global project named PRISE
(Plate-forme de Recherche et d’Ingénierie des Systèmes
Embarqués). The main focus of this project is to study
new embedded system concepts and techniques through a
special hardware and software environment.

A. Description

Our platform is built around the following components:
1) Hardware: 4 real-time nodes with Opteron 6 core

processors, 2 Graphical HP station computer with Intel
Xeon processors and high performance GP-GPU, an
ethernet Gigabit switch on a dedicated network and
also two input organs (Yoke/Throttle/Pedal systems).

2) Software: Linux Red Hawk [16] Operating system
compliant with POSIX Real time standard [17]. This
RTOS has been already used in the simulation domain
by TNO laboratory which uses this OS to run their

own RTI implemented in C++. Their experiments have
concluded that this operating system is suitable for
real-time computing [18].

3) A distributed clock technology allowing distributing
same clock reference to each node [19].

B. CERTI

For years, the French Aerospace Laboratory (ONERA)
has been developing his own Open-Source middleware RTI
compliant with HLA standard called CERTI [20], running
under several operating systems including Linux and Win-
dows. We will use this RTI for interconnecting each com-
ponent of the simulator. This RTI is recognizable through
its original architecture of communicating processes. It is
a distributed system involving two processes, a local one
(RTIA) and a global one (RTIG), as well as a library
(libRTI) linked with each federate. The CERTI architecture
is depicted in Fig. 1. Each federate process interacts locally
with an RTI Ambassador process (RTIA) through a Unix-
domain socket. The RTIA processes exchange messages over
the network, in particular with the RTIG process, via TCP
(and also UDP) sockets, in order to run the distributed
algorithms associated with the RTI services.

In our case, a key benefit of this architecture is to master
the implementation of the used RTI and thus to facilitate the
integration of changes in the source code to ensure tempo-
ral predictability of CERTI. Initial results, providing some
answers about the suitability of CERTI to face real-time
constraints, came from ONERA/CNES satellites formation
flying studies [21]. These studies have shown that CERTI
(in its original version) is able to manage multiple real-time
federates with short period of time.

IV. SIMULATION ARCHITECTURE

A. Global view

The PRISE HLA Federation is composed of 11 feder-
ates, each representing a specific part of the aircraft or

!
Figure 1: CERTI architecture

Figure 1. CERTI Architecture

environment (Fig. 2). New federates will be incorporated
accordingly to the evolution of the requirements. For now,
the federates go as follows:

• Federate 0: Main controller monitors and controls all
simulation attributes;

• Federate 1: Joystick relays pilot inputs coming from
the yoke/pedals device;

• Federate 2: Cockpit emulates user interface for au-
topilot settings via touchscreen;

• Federate 3: EFCS (Electronic Flight Control System)
englobes all flight controllers and automatic pilot func-
tions;

• Federate 4 Control surfaces simulates five different
control surfaces (left/right ailerons, left/right elevators,
rudder)

• Federate 5 Engines simulates two CFM56-5A1 turbo-
fans;

• Federate 6 Flight Dynamics simulates the flight me-
chanics equations;

• Federate 7 Sensors simulates twenty different sensors
of various kinds;

• Federate 8 Environment represents the US stan-
dard atmosphere (1976) and different turbulences/winds
(Dryden, Von Karman, windshear) that could occur
during the flight;

• Federate 9 PFD (Primary Flight Display) is a cockpit
view with flight instruments;

• Federate 10 Visualization shows the aircraft in a
virtual environment (FlightGear visualization engine,
but as well Microsoft Flight Simulator or X-Plane).

B. Real-time constraints

The application is divided into two parts:

• the first part is concerned by hard real-time constraints
and has to ensure that all deadlines are met for each
federate. The Joystick and EFCS federates work at
a frequency of 50 Hz, corresponding to an average
frequency of the usual avionics system. The other
federates (Engines, Control Surfaces, Flight Dynamics
and Sensors) work at a frequency of 100 Hz; they sim-
ulate continuous-time systems modeled by differential
equations and solved by numerical methods. Empiric
experiments showed that 100 Hz was sufficient to
deliver reliable results. Moreover, by taking too high
a frequency, the real-time constraints would no longer
be held.

• the second part deals with soft real-time constraints; the
goal is to meet a certain subset of deadlines in order to
optimize some application specific criteria. In our case,
the Visualization and PFD federates work at a mean
refresh rate of 60Hz in order to be fluid for human
eyes [22].

V. TOWARDS A REAL-TIME EXECUTION

We present here the key steps that led us to a real-time
execution of the federation.

A. Run-time Execution Characteristics

The calculation of Worst Case Execution Time (WCET)
is a key issue for successfully schedule processes because
it allows determining the Ci parameter value for a task.
Calculation of the WCET should take into account specific
calculations made by the federate. WCET were estimated for
each federate. Moreover, Worst Case Transit Time (WCTT)
were calculated for each message through CERTI middle-
ware.

Current CERTI version does not provide any service or
mechanism to ensure a real-time behavior of a simulation
(federation). To manage every part of federation and to
be compliant with formal techniques and scheduling tech-
niques, different methods were added to the CERTI API
(for Linux Operating System). The different implemented
services also ensure a correct predictability for CERTI com-
munications (WCTT) and federate computation (WCET).

We first implemented functions in CERTI that allow using
affinity mechanism. CPU affinity is a scheduler property that
assigns a process (federate, RTIA or RTIG) to a given set
of CPUs on the system. The Linux scheduler will honor the
given CPU affinity and the process will not run on any other
CPU.

Another interface allows now the management of priority
and scheduler for CERTI processes (including federates,
RTIAs and RTIG). Modification of priority relies then
on the choice of real-time scheduling algorithms under
POSIX/Linux: two real-time algorithms, SCHED FIFO and
SCHED RR, are intended for time-critical applications that
need accurate control over the way in which runnable
processes are selected for execution. Finally, we also use
the mlockall mechanism for each federate, their respective
RTIA and the RTIG processes in order to disable memory
paging into the address space of the calling process.

Figure 2. Federation description

B. Run time execution mode

Different executions modes were designed and imple-
mented, each based on different approaches (data flow, time
management). Depending on the chosen approach, a formal
validation of the real-time behavior could be exhibited [23].

VI. CONCLUSION

The first but complete step of PRISE project has required
the mastering of many aspects: from the realistic imple-
mentation of avionics code and environment models to the
extension of HLA and CERTI distributed simulation to real-
time. It will be easy to change the version of an existing
federate by another (if its WCET is compliant with the
global approach) in this modular and flexible architecture.
It will also be easy to add new federates with an evolution
of the global object model of the federation (HLA FOM)
and a new real time analysis. We hope also that the defined
FOM becomes a reference FOM for this research domain.
We plan to study the flight formation of many systems by the
duplication of the existing federates and the addition of the
turbulence interaction with the addition of a new specialized
federate.

REFERENCES

[1] Object Management Group, “Minimum CORBA - Joint Re-
vised,” August 1998.

[2] J. A. Stankovic, “Misconceptions about real-time computing,”
IEEE Computer, vol. 21, no. 10, 1988.

[3] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The
design and performance of a real-time corba event service,”
SIGPLAN Notification, vol. 32, no. 10, pp. 184–200, 1997.

[4] Object Management Group, “Real-Time CORBA
Spécifications 1.2,” Janvier 2005.

[5] ——, “Data Distribution Service for Real-time Systems Spec-
ification version 1.2,” January, 2007.

[6] The Institute of Electrical and Electronics Engineers (IEEE)
Computer Society, “IEEE Standard for Modeling and Simu-
lation (M&S) High Level Architecture (HLA) - Framework
and Rules,” September 2000.

[7] ——, “IEEE Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA) - Object Model Template
(OMT) Specification,” September 2000.

[8] ——, “IEEE Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA) - Federate Interface Specifi-
cation,” September 2000.

[9] H. Zhao, “HLA Streaming and Real-Time Extension,” Ph.D.
dissertation, School of Information Technology Engineering,
University of Ottawa, 2001.

[10] S. Zheng, J. He, J. Jin, and J. Han, “Dds based high
fidelity flight simulator,” in Proceedings of the 2009 WASE
International Conference on Information Engineering, 2009.

[11] A. Lemmers, P. Kuiper, and R. Verhage, “Performance of a
component-based flight-simulator architecture using the hla
paradigm,” in AIAA Modeling and Simulation Technologies
Conference and Exhibit, ser. AIAA-2002-4476, August 2002.

[12] F. Hodum, J. Noseworthy, and S. Bachinsky, “Implementation
of the next generation rti,” Spring Simulation Interoperability
Workshop, 1997.

[13] T. McLean, R. Fujimoto, and B. Fitzgibbons, “Middleware for
real-time distributed simulations,” Concurrency and Compu-
tation: Practice and Experience, vol. 16, no. 15, pp. 1483
–1501, 2004.

[14] H. Zhao and N. Georganas, “Architecture proposal for Real-
Time RTI,” Proceedings of the Simulation Interoperability
Standards Organization (SISO) Simulation Interoperability
Workshop, 2000.

[15] A. Boukerche and K. Lu, “A novel approach to real-time rti
based distributed simulation system,” in Annual Simulation
Symposium (ANSS) : Proceedings of the 38th annual Sympo-
sium on Simulation. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 267–274.

[16] J. Baietto, “Real Time Linux: The RedHawk Approach,”
Concurrent Computer Corporation White Paper, 2002.

[17] W. M. Corwin, D. C. Locke, and K. D. Gordon, “Overview
of the ieee posix p1003.4 realtime extension to posix,” IEEE
Real-Time Syst. Newsl., vol. 6, pp. 9–18, March 1990.

[18] Jansen, Roger and Huiskamp, Wim and Boomgaardt, Jan-Jell
and Brassé, Marco, “Real-Time Scheduling of HLA Simulator
Components,” Proceedings of the Simulation Interoperability
Standards Organization (SISO) Spring Simulation Interoper-
ability Workshop, 2004.

[19] C. C. Corporation, “Real Time Clock and Interrupt Moule
Users Guide,” User Guide, August 2001.

[20] E. Noulard, J.-Y. Rousselot, and P. Siron, “CERTI : an open
Source RTI, why and how,” Fall Simulation Interoperability
Workshop, 2009.

[21] E. Noulard, B. d’Ausbourg, and P. Siron, “Running Real Time
Distributed Simulations under Linux and CERTI,” 2007.

[22] K. W. Arthur, K. S. Booth, and C. Ware, “Evaluating 3d task
performance for fish tank virtual worlds,” ACM Transactions
on Information Systems, vol. 11, pp. 239–265, July 1993.

[23] J.-B. Chaudron, P. Siron, M. Adelantado, and E. Noulard,
“HLA high performance and real-time simulation studies with
CERTI,” Guimaraes, Portugal, 2011.

