54 research outputs found

    Branch Mode Selection during Early Lung Development

    Get PDF
    Many organs of higher organisms, such as the vascular system, lung, kidney, pancreas, liver and glands, are heavily branched structures. The branching process during lung development has been studied in great detail and is remarkably stereotyped. The branched tree is generated by the sequential, non-random use of three geometrically simple modes of branching (domain branching, planar and orthogonal bifurcation). While many regulatory components and local interactions have been defined an integrated understanding of the regulatory network that controls the branching process is lacking. We have developed a deterministic, spatio-temporal differential-equation based model of the core signaling network that governs lung branching morphogenesis. The model focuses on the two key signaling factors that have been identified in experiments, fibroblast growth factor (FGF10) and sonic hedgehog (SHH) as well as the SHH receptor patched (Ptc). We show that the reported biochemical interactions give rise to a Schnakenberg-type Turing patterning mechanisms that allows us to reproduce experimental observations in wildtype and mutant mice. The kinetic parameters as well as the domain shape are based on experimental data where available. The developed model is robust to small absolute and large relative changes in the parameter values. At the same time there is a strong regulatory potential in that the switching between branching modes can be achieved by targeted changes in the parameter values. We note that the sequence of different branching events may also be the result of different growth speeds: fast growth triggers lateral branching while slow growth favours bifurcations in our model. We conclude that the FGF10-SHH-Ptc1 module is sufficient to generate pattern that correspond to the observed branching modesComment: Initially published at PLoS Comput Bio

    FGF10 maintains distal lung bud epithelium and excessive signaling leads to progenitor state arrest, distalization, and goblet cell metaplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interaction with the surrounding mesenchyme is necessary for development of endodermal organs, and Fibroblast growth factors have recently emerged as mesenchymal-expressed morphogens that direct endodermal morphogenesis. The fibroblast growth factor 10 (<it>Fgf10</it>) null mouse is characterized by the absence of lung bud development. Previous studies have shown that this requirement for <it>Fgf10 </it>is due in part to its role as a chemotactic factor during branching morphogenesis. In other endodermal organs <it>Fgf10 </it>also plays a role in regulating differentiation.</p> <p>Results</p> <p>Through gain-of-function analysis, we here find that FGF10 inhibits differentiation of the lung epithelium and promotes distalization of the embryonic lung. Ectopic expression of FGF10 in the lung epithelium caused impaired lung development and perinatal lethality in a transgenic mouse model. Lung lobes were enlarged due to increased interlobular distance and hyperplasia of the airway epithelium. Differentiation of bronchial and alveolar cell lineages was inhibited. The transgenic epithelium consisted predominantly of proliferating progenitor-like cells expressing Pro-surfactant protein C, TTF1, PEA3 and Clusterin similarly to immature distal tip cells. Strikingly, goblet cells developed within this arrested epithelium leading to goblet cell hyperplasia.</p> <p>Conclusion</p> <p>We conclude that FGF10 inhibits terminal differentiation in the embryonic lung and maintains the distal epithelium, and that excessive levels of FGF10 leads to metaplastic differentiation of goblet cells similar to that seen in chronic inflammatory diseases.</p

    Diabetes Alters Intracellular Calcium Transients in Cardiac Endothelial Cells

    Get PDF
    Diabetic cardiomyopathy (DCM) is a diabetic complication, which results in myocardial dysfunction independent of other etiological factors. Abnormal intracellular calcium ([Ca2+]i) homeostasis has been implicated in DCM and may precede clinical manifestation. Studies in cardiomyocytes have shown that diabetes results in impaired [Ca2+]i homeostasis due to altered sarcoplasmic reticulum Ca2+ ATPase (SERCA) and sodium-calcium exchanger (NCX) activity. Importantly, altered calcium homeostasis may also be involved in diabetes-associated endothelial dysfunction, including impaired endothelium-dependent relaxation and a diminished capacity to generate nitric oxide (NO), elevated cell adhesion molecules, and decreased angiogenic growth factors. However, the effect of diabetes on Ca2+ regulatory mechanisms in cardiac endothelial cells (CECs) remains unknown. The objective of this study was to determine the effect of diabetes on [Ca2+]i homeostasis in CECs in the rat model (streptozotocin-induced) of DCM. DCM-associated cardiac fibrosis was confirmed using picrosirius red staining of the myocardium. CECs isolated from the myocardium of diabetic and wild-type rats were loaded with Fura-2, and UTP-evoked [Ca2+]i transients were compared under various combinations of SERCA, sarcoplasmic reticulum Ca2+ ATPase (PMCA) and NCX inhibitors. Diabetes resulted in significant alterations in SERCA and NCX activities in CECs during [Ca2+]i sequestration and efflux, respectively, while no difference in PMCA activity between diabetic and wild-type cells was observed. These results improve our understanding of how diabetes affects calcium regulation in CECs, and may contribute to the development of new therapies for DCM treatment

    Cellular magnesium acquisition : an anomaly in embryonic cation homeostasis

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Experimental and Molecular Pathology 83 (2007): 224-240, doi:10.1016/j.yexmp.2007.03.007.The intracellular dominance of magnesium ion makes clinical assessment difficult despite the critical role of Mg++ in many key functions of cells and enzymes. There is general consensus that serum Mg++ levels are not representative of the growing number of conditions for which magnesium is known to be important. There is no consensus method or sample source for testing for clinical purposes. High intracellular Mg++ in vertebrate embryos results in part from interactions of cations which influence cell membrane transport systems. These are functionally competent from the earliest stages, at least transiently held over from the unfertilized ovum. Kinetic studies with radiotracer cations, osmolar variations, media lacking one or more of the four biological cations, Na+, Mg++, K+, and Ca++, and metabolic poison 0.05 mEq/L NaF, demonstrated: (1) all four cations influence the behavior of the others, and (2) energy is required for uptake and efflux on different time scales, some against gradient. Na+ uptake is energy dependent against an efflux gradient. The rate of K+ loss is equal with or without fluoride, suggesting a lack of an energy requirement at these stages. Ca++ efflux took twice as long in the presence of fluoride, likely due in part to intracellular binding. Mg++ is anomalous in that early teleost vertebrate embryos have an intracellular content exceeding the surrounding sea water, an isolated unaffected yolk compartment, and a clear requirement for energy for both uptake and efflux. The physiological, pathological, and therapeutic roles of magnesium are poorly understood. This will change: (1) when 28Mg is once again generally available at a reasonable cost for both basic research and clinical assessment, and (2) when serum or plasma levels are determined simultaneously with intracellular values, preferably as part of complete four cation profiles. Atomic absorption spectrophotometry, energy-dispersive x-ray analysis, and inductively coupled plasma emission spectroscopy on sublingual mucosal and peripheral blood samples are potential methods of value for coordinated assessments.AEC Grant No. 134

    Characterization of a calsequestrin-like protein from sea-urchin eggs

    No full text

    Resistin and risks of incident heart failure subtypes and cardiac fibrosis: the Multi-Ethnic Study of Atherosclerosis.

    No full text
    AimsResistin is a circulating inflammatory biomarker that is associated with cardiovascular disease. We investigated the associations of resistin and incident heart failure (HF) and its subtypes, as well as specific measures of subclinical HF (myocardial fibrosis and relevant biomarkers).MethodsWe analysed data from 1968 participants in the Multi-Ethnic Study of Atherosclerosis with measurements of plasma resistin levels at clinic visits from 2002 to 2005. Participants were subsequently followed for a median of 10.5&nbsp;years for HF events. The associations between resistin levels and incident HF, HF with reduced ejection fraction (HFrEF), and HF with preserved ejection fraction (HFpEF) were examined using multivariable Cox proportional hazards models. Linear regression models assessed the associations between resistin levels and myocardial fibrosis from cardiac magnetic resonance imaging, as well as hs-cTnT and NT-proBNP.ResultsThe mean age of the cohort was 64.7&nbsp;years, and 50.0% were female. Seventy-four participants (4%) developed incident HF during follow-up. In a Cox proportional hazards model adjusted for age, gender, education level, race/ethnicity, and traditional risk factors, higher resistin levels were significantly associated with incident HF (HR 1.44, CI 1.18-1.75, P&nbsp;=&nbsp;0.001) and HFrEF (HR 1.47, CI 1.07-2.02, P&nbsp;=&nbsp;0.016), but not with HFpEF (HR 1.25, CI 0.89-1.75, P&nbsp;=&nbsp;0.195). Resistin levels showed no significant associations with myocardial fibrosis, NT-proBNP, or hs-cTnT levels.ConclusionsIn a multi-ethnic cohort free of cardiovascular disease at baseline, elevated resistin levels were associated with incident HF, more prominently with incident HFrEF than HFpEF, but not with subclinical myocardial fibrosis or biomarkers of HF

    Transcoronary gene transfer of SERCA2a increases coronary blood flow and decreases cardiomyocyte size in a type 2 diabetic rat model

    No full text
    The Otsuka Long-Evans Tokushima fatty rat is an animal model of Type 2 diabetes mellitus (DM), which is characterized by diastolic dysfunction associated with decreased sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a). The aim of this study was to examine whether gene transfer of SERCA2a can influence coronary blood flow and cardiomyocyte diameter in this model. DM rats were injected with adenovirus carrying SERCA2a (DM+SERCA) or beta-galactosidase gene (DM+betaGal). Coronary blood flow was measured in cross-circulated excised hearts 3 days after infection. Although in all groups coronary blood flow remained unchanged even if left ventricular (LV) volume or intracoronary Ca(2+) infusion was increased, the DM+SERCA group showed a sustained increase in coronary blood flow compared with the other groups. This result suggests that the sustained high coronary blood flow is a specific response in SERCA2a-overexpressed hearts. Although the LV weight-to-body weight ratio (LV/BW) and cardiomyocyte diameter were higher in the DM and DM+betaGal groups than in the non-DM group, in the DM+SERCA group, these measurements were restored to non-DM size. The percentages of collagen area in the three DM groups was significantly higher than results shown in non-DM rats, and there were no significant differences in collagen area percentage among the three DM groups. These results suggest that a lowered LV/BW by SERCA2a overexpression is due mainly to reduced size of cardiomyocytes without any changes in collagen area percentage. In conclusion, in DM failing hearts, SERCA2a gene transfer can increase coronary blood flow and reduce cardiomyocyte size without reduction in collagen production
    • …
    corecore