37 research outputs found

    Development and diagnostic validation of the Brisbane Evidence-Based Language Test

    Get PDF
    Purpose: To describe the development and determine the diagnostic accuracy of the Brisbane Evidence-Based Language Test in detecting aphasia. Methods: Consecutive acute stroke admissions (n = 100; mean = 66.49y) participated in a single (assessor) blinded cross-sectional study. Index assessment was the ∼45 min Brisbane Evidence-Based Language Test. The Brisbane Evidence-Based Language Test is further divided into four 15–25 min Short Tests: two Foundation Tests (severe impairment), Standard (moderate) and High Level Test (mild). Independent reference standard included the Language Screening Test, Aphasia Screening Test, Comprehensive Aphasia Test and/or Measure for Cognitive-Linguistic Abilities, treating team diagnosis and aphasia referral post-ward discharge. Results: Brisbane Evidence-Based Language Test cut-off score of ≤ 157 demonstrated 80.8% (LR+ =10.9) sensitivity and 92.6% (LR− =0.21) specificity. All Short Tests reported specificities of ≥ 92.6%. Foundation Tests I (cut-off ≤ 61) and II (cut-off ≤ 51) reported lower sensitivity (≥ 57.5%) given their focus on severe conditions. The Standard (cut-off ≤ 90) and High Level Test (cut-off ≤ 78) reported sensitivities of ≥ 72.6%. Conclusion: The Brisbane Evidence-Based Language Test is a sensitive assessment of aphasia. Diagnostically, the High Level Test recorded the highest psychometric capabilities of the Short Tests, equivalent to the full Brisbane Evidence-Based Language Test. The test is available for download from brisbanetest.org. Implications for rehabilitation: Aphasia is a debilitating condition and accurate identification of language disorders is important in healthcare. Language assessment is complex and the accuracy of assessment procedures is dependent upon a variety of factors. The Brisbane Evidence-Based Language Test is a new evidence-based language test specifically designed to adapt to varying patient need, clinical contexts and co-occurring conditions. In this cross-sectional validation study, the Brisbane Evidence-Based Language Test was found to be a sensitive measure for identifying aphasia in stroke

    Social stratification without genetic differentiation at the site of Kulubnarti in Christian Period Nubia

    Get PDF
    Relatively little is known about Nubia’s genetic landscape prior to the influence of the Islamic migrations that began in the late 1st millennium CE. Here, we increase the number of ancient individuals with genome-level data from the Nile Valley from three to 69, reporting data for 66 individuals from two cemeteries at the Christian Period (~650–1000 CE) site of Kulubnarti, where multiple lines of evidence suggest social stratification. The Kulubnarti Nubians had ~43% Nilotic-related ancestry (individual variation between ~36–54%) with the remaining ancestry consistent with being introduced through Egypt and ultimately deriving from an ancestry pool like that found in the Bronze and Iron Age Levant. The Kulubnarti gene pool – shaped over a millennium – harbors disproportionately female-associated West Eurasian-related ancestry. Genetic similarity among individuals from the two cemeteries supports a hypothesis of social division without genetic distinction. Seven pairs of inter-cemetery relatives suggest fluidity between cemetery groups. Present-day Nubians are not directly descended from the Kulubnarti Nubians, attesting to additional genetic input since the Christian Period.K.A.S. was supported by a Doctoral Dissertation Research Improvement Grant from the National Science Foundation (BCS-1613577). D.R. was funded by NSF HOMINID grant BCS-1032255; NIH (NIGMS) grant GM100233; the Allen Discovery Center program, a Paul G. Allen Frontiers Group advised program of the Paul G. Allen Family Foundation; the John Templeton Foundation grant 61220; and the Howard Hughes Medical Institute

    Ancient genomes in South Patagonia reveal population movements associated with technological shifts and geography

    Get PDF
    Archaeological research documents major technological shifts among people who have lived in the southern tip of South America (South Patagonia) during the last thirteen millennia, including the development of marine-based economies and changes in tools and raw materials. It has been proposed that movements of people spreading culture and technology propelled some of these shifts, but these hypotheses have not been tested with ancient DNA. Here we report genome-wide data from 20 ancient individuals, and co-analyze it with previously reported data. We reveal that immigration does not explain the appearance of marine adaptations in South Patagonia. We describe partial genetic continuity since ~6600 BP and two later gene flows correlated with technological changes: one between 4700–2000 BP that affected primarily marine-based groups, and a later one impacting all <2000 BP groups. From ~2200–1200 BP, mixture among neighbors resulted in a cline correlated to geographic ordering along the coast.Fil: Nakatsuka, Nathan. Harvard Medical School; Estados UnidosFil: Luisi, Pierre. Universidad Nacional de Córdoba. Facultad de Filosofía y Humanidades; ArgentinaFil: Motti, Josefina María Brenda. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Salemme, Monica Cira. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Universidad Nacional de Tierra del Fuego; ArgentinaFil: Santiago, Fernando Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: D'angelo del Campo, Manuel Domingo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Sociales. Grupo de Estudios Interdisciplinarios sobre Poblaciones Humanas de Patagonia Austral; Argentina. Universidad Autónoma de Madrid; EspañaFil: Vecchi, Rodrigo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; ArgentinaFil: Espinosa Parrilla, Yolanda. Consejo Superior de Investigaciones Científicas; EspañaFil: Prieto, Alfredo. Universidad de Magallanes; ChileFil: Adamski, Nicole. Harvard Medical School; Estados UnidosFil: Lawson, Ann Marie. Harvard Medical School; Estados UnidosFil: Harper, Thomas K.. University of Pennsylvania; Estados UnidosFil: Culleton, Brendan J.. University of Pennsylvania; Estados UnidosFil: Kennett, Douglas J.. University of California; Estados UnidosFil: Lalueza Fox, Carles. Consejo Superior de Investigaciones Científicas; EspañaFil: Mallick, Swapan. Harvard Medical School; Estados UnidosFil: Rohland, Nadin. Harvard Medical School; Estados UnidosFil: Guichón, Ricardo A.. Universidad Nacional del Centro de la Provincia de Buenos Aires; ArgentinaFil: Cabana, Graciela S.. University of Tennessee; Estados UnidosFil: Nores, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Antropología de Córdoba. Universidad Nacional de Córdoba. Facultad de Filosofía y Humanidades. Instituto de Antropología de Córdoba; ArgentinaFil: Reich, David. Harvard Medical School. Department Of Medicine; Estados Unido

    The genomic history of the Iberian Peninsula over the past 8000 years

    Get PDF
    We assembled genome-wide data from 271 ancient Iberians, of whom 176 are from the largely unsampled period after 2000 BCE, thereby providing a high-resolution time transect of the Iberian Peninsula.We document high genetic substructure between northwestern and southeastern hunter-gatherers before the spread of farming.We reveal sporadic contacts between Iberia and North Africa by ~2500 BCE and, by ~2000 BCE, the replacement of 40% of Iberia's ancestry and nearly 100% of its Y-chromosomes by people with Steppe ancestry.We show that, in the Iron Age, Steppe ancestry had spread not only into Indo-European-speaking regions but also into non-Indo-European-speaking ones, and we reveal that present-day Basques are best described as a typical Iron Age population without the admixture events that later affected the rest of Iberia. Additionally, we document how, beginning at least in the Roman period, the ancestry of the peninsula was transformed by gene flow from North Africa and the eastern Mediterranean

    Male-Mediated Gene Flow in Patrilocal Primates

    Get PDF
    BACKGROUND: Many group-living species display strong sex biases in dispersal tendencies. However, gene flow mediated by apparently philopatric sex may still occur and potentially alters population structure. In our closest living evolutionary relatives, dispersal of adult males seems to be precluded by high levels of territoriality between males of different groups in chimpanzees, and has only been observed once in bonobos. Still, male-mediated gene flow might occur through rare events such as extra-group matings leading to extra-group paternity (EGP) and female secondary dispersal with offspring, but the extent of this gene flow has not yet been assessed. METHODOLOGY/PRINCIPAL FINDINGS: Using autosomal microsatellite genotyping of samples from multiple groups of wild western chimpanzees (Pan troglodytes verus) and bonobos (Pan paniscus), we found low genetic differentiation among groups for both males and females. Characterization of Y-chromosome microsatellites revealed levels of genetic differentiation between groups in bonobos almost as high as those reported previously in eastern chimpanzees, but lower levels of differentiation in western chimpanzees. By using simulations to evaluate the patterns of Y-chromosomal variation expected under realistic assumptions of group size, mutation rate and reproductive skew, we demonstrate that the observed presence of multiple and highly divergent Y-haplotypes within western chimpanzee and bonobo groups is best explained by successful male-mediated gene flow. CONCLUSIONS/SIGNIFICANCE: The similarity of inferred rates of male-mediated gene flow and published rates of EGP in western chimpanzees suggests this is the most likely mechanism of male-mediated gene flow in this subspecies. In bonobos more data are needed to refine the estimated rate of gene flow. Our findings suggest that dispersal patterns in these closely related species, and particularly for the chimpanzee subspecies, are more variable than previously appreciated. This is consistent with growing recognition of extensive behavioral variation in chimpanzees and bonobos

    Reconstructing the Deep Population History of Central and South America

    Get PDF
    We report genome-wide ancient DNA from 49 individuals forming four parallel time transects in Belize, Brazil, the Central Andes, and the Southern Cone, each dating to at least 9,000 years ago. The common ancestral population radiated rapidly from just one of the two early branches that contributed to Native Americans today. We document two previously unappreciated streams of gene flow between North and South America. One affected the Central Andes by 4,200 years ago, while the other explains an affinity between the oldest North American genome associated with the Clovis culture and the oldest Central and South Americans from Chile, Brazil, and Belize. However, this was not the primary source for later South Americans, as the other ancient individuals derive from lineages without specific affinity to the Clovis-associated genome, suggesting a population replacement that began at least 9,000 years ago and was followed by substantial population continuity in multiple regions

    A genetic history of the pre-contact Caribbean

    Get PDF
    Humans settled the Caribbean about 6,000 years ago, and ceramic use and intensified agriculture mark a shift from the Archaic to the Ceramic Age at around 2,500 years ago1,2,3. Here we report genome-wide data from 174 ancient individuals from The Bahamas, Haiti and the Dominican Republic (collectively, Hispaniola), Puerto Rico, Curaçao and Venezuela, which we co-analysed with 89 previously published ancient individuals. Stone-tool-using Caribbean people, who first entered the Caribbean during the Archaic Age, derive from a deeply divergent population that is closest to Central and northern South American individuals; contrary to previous work4, we find no support for ancestry contributed by a population related to North American individuals. Archaic-related lineages were >98% replaced by a genetically homogeneous ceramic-using population related to speakers of languages in the Arawak family from northeast South America; these people moved through the Lesser Antilles and into the Greater Antilles at least 1,700 years ago, introducing ancestry that is still present. Ancient Caribbean people avoided close kin unions despite limited mate pools that reflect small effective population sizes, which we estimate to be a minimum of 500–1,500 and a maximum of 1,530–8,150 individuals on the combined islands of Puerto Rico and Hispaniola in the dozens of generations before the individuals who we analysed lived. Census sizes are unlikely to be more than tenfold larger than effective population sizes, so previous pan-Caribbean estimates of hundreds of thousands of people are too large5,6. Confirming a small and interconnected Ceramic Age population7, we detect 19 pairs of cross-island cousins, close relatives buried around 75 km apart in Hispaniola and low genetic differentiation across islands. Genetic continuity across transitions in pottery styles reveals that cultural changes during the Ceramic Age were not driven by migration of genetically differentiated groups from the mainland, but instead reflected interactions within an interconnected Caribbean world1,8.This work was supported by a grant from the National Geographic Society to M. Pateman to facilitate analysis of skeletal material from The Bahamas and by a grant from the Italian ‘Ministry of Foreign Affairs and International Cooperation’ (Italian archaeological, anthropological and ethnological missions abroad, DGPSP Ufficio VI). D.R. was funded by NSF HOMINID grant BCS-1032255, NIH (NIGMS) grant GM100233, the Paul Allen Foundation, the John Templeton Foundation grant 61220 and the Howard Hughes Medical Institute.Peer reviewe

    The Anglo-Saxon migration and the formation of the early English gene pool.

    Get PDF
    The history of the British Isles and Ireland is characterized by multiple periods of major cultural change, including the influential transformation after the end of Roman rule, which precipitated shifts in language, settlement patterns and material culture1. The extent to which migration from continental Europe mediated these transitions is a matter of long-standing debate2-4. Here we study genome-wide ancient DNA from 460 medieval northwestern Europeans-including 278 individuals from England-alongside archaeological data, to infer contemporary population dynamics. We identify a substantial increase of continental northern European ancestry in early medieval England, which is closely related to the early medieval and present-day inhabitants of Germany and Denmark, implying large-scale substantial migration across the North Sea into Britain during the Early Middle Ages. As a result, the individuals who we analysed from eastern England derived up to 76% of their ancestry from the continental North Sea zone, albeit with substantial regional variation and heterogeneity within sites. We show that women with immigrant ancestry were more often furnished with grave goods than women with local ancestry, whereas men with weapons were as likely not to be of immigrant ancestry. A comparison with present-day Britain indicates that subsequent demographic events reduced the fraction of continental northern European ancestry while introducing further ancestry components into the English gene pool, including substantial southwestern European ancestry most closely related to that seen in Iron Age France5,6

    The Anglo-Saxon migration and the formation of the early English gene pool

    Get PDF
    The history of the British Isles and Ireland is characterized by multiple periods of major cultural change, including the influential transformation after the end of Roman rule, which precipitated shifts in language, settlement patterns and material culture1. The extent to which migration from continental Europe mediated these transitions is a matter of long-standing debate2,3,4. Here we study genome-wide ancient DNA from 460 medieval northwestern Europeans—including 278 individuals from England—alongside archaeological data, to infer contemporary population dynamics. We identify a substantial increase of continental northern European ancestry in early medieval England, which is closely related to the early medieval and present-day inhabitants of Germany and Denmark, implying large-scale substantial migration across the North Sea into Britain during the Early Middle Ages. As a result, the individuals who we analysed from eastern England derived up to 76% of their ancestry from the continental North Sea zone, albeit with substantial regional variation and heterogeneity within sites. We show that women with immigrant ancestry were more often furnished with grave goods than women with local ancestry, whereas men with weapons were as likely not to be of immigrant ancestry. A comparison with present-day Britain indicates that subsequent demographic events reduced the fraction of continental northern European ancestry while introducing further ancestry components into the English gene pool, including substantial southwestern European ancestry most closely related to that seen in Iron Age France5,6
    corecore