98 research outputs found

    Cross chromosomal similarity for DNA sequence compression

    Get PDF
    Current DNA compression algorithms work by finding similar repeated regions within the DNA sequence and then encoding these regions together to achieve compression. Our study on chromosome sequence similarity reveals that the length of similar repeated regions within one chromosome is about 4.5% of the total sequence length. The compression gain is often not high because of these short lengths. It is well known that similarity exist among different regions of chromosome sequences. This implies that similar repeated sequences are found among different regions of chromosome sequences. Here, we study cross-chromosomal similarity for DNA sequence compression. The length and location of similar repeated regions among the sixteen chromosomes of S. cerevisiae are studied. It is found that the average percentage of similar subsequences found between two chromosome sequences is about 10% in which 8% comes from cross-chromosomal prediction and 2% from self-chromosomal prediction. The percentage of similar subsquences is about 18% in which only 1.2% comes from self-chromosomal prediction while the rest is from cross-chromosomal prediction among the 16 chromosomes studied. This suggests the importance of cross-chromosomal similarities in addition to self-chromosomal similarities in DNA sequence compression. An additional 23% of storage space could be reduced on average using self-chromosomal and cross-chromosomal predictions in compressing the 16 chromosomes of S. cerevisiae

    Translational repression of mouse mu opioid receptor expression via leaky scanning

    Get PDF
    Mu opioid receptor (MOR) expression is under temporal and spatial controls, but expression levels of the MOR gene are relatively low in vivo. In addition to transcriptional regulations, upstream AUGs (uAUGs) and open reading frames (uORFs) profoundly affect the translation of the primary ORF and thus the protein levels in several genes. The 5â€Č-untranslated region (UTR) of mouse MOR mRNA contains three uORFs preceding the MOR main initiation codon. In MOR-fused EGFP or MOR promoter/luciferase reporter constructs, mutating each uAUG individually or in combinations increased MOR transient heterologous expression in neuroblastoma NMB and HEK293 cells significantly. Translation of such constructs increased up to 3-fold without altering the mRNA levels if either the third uAUG or both the second and third AUGs were mutated. Additionally, these uAUG-mediated translational inhibitions were independent of their peptide as confirmed by internal mutation analyses in each uORF. Translational studies indicated that protein syntheses were initiated at these uAUG initiation sites, with the third uAUG initiating the highest translation level. These results support the hypothesis that uORFs in mouse MOR mRNA act as negative regulators through a ribosome leaky scanning mechanism. Such leaky scanning resulted in the suppression of mouse MOR under normal conditions

    Poly(C) binding protein family is a transcription factor in mu-opioid receptor gene expression

    Get PDF
    ABSTRACT The mouse -opioid receptor (MOR) gene has two promoters, referred to as distal and proximal promoter. Previously, our colleagues reported that a 26-base pair (bp) cis-acting element of the mouse MOR gene activates MOR gene expression. Here, we report the cloning of four members of the poly(C) binding protein (PCBP) family and show that the 26-bp polypyrimidine stretch in MOR proximal promoter interacts with these PCBPs and activates MOR transcription. The PCBPs bind not only to single-stranded but also to double-stranded DNA. The nuclear run-off assay and semiquantitative RT-PCR shows that PCBPs enhance the transcription rate of MOR gene. Furthermore, we performed refined mapping to elucidate the core region (ÏȘ317/ ÏȘ304) involved in mediating the PCBP-induced MOR promoter activity. Decoy oligonucleotides against the polypyrimidine stretch inhibit the PCBP-induced MOR promoter activity, thereby reconfirming the role of this element in regulating MOR promoter activity. Chromatin immunoprecipitation assay confirmed the interaction of PCBPs with MOR promoter in vivo. In conclusion, we demonstrate that PCBPs act as a transcription factor and positively regulate MOR gene expression in NMB cells

    Evidence of the neuron-restrictive silencer factor (NRSF) interaction with Sp3 and its synergic repression to the mu opioid receptor (MOR) gene

    Get PDF
    Previously, we reported that the neuron-restrictive silencer element (NRSE) of mu opioid receptor (MOR) functions as a critical regulator to repress the MOR transcription in specific neuronal cells, depending on neuron-restriction silence factor (NRSF) expression levels [C.S.Kim, C.K.Hwang, H.S.Choi, K.Y.Song, P.Y.Law, L.N.Wei and H.H.Loh (2004) J. Biol. Chem., 279, 46464–46473]. Herein, we identify a conserved GC sequence next to NRSE region in the mouse MOR gene. The inhibition of Sp family factors binding to this GC box by mithramycin A led to a significant increase in the endogenous MOR transcription. In the co-immunoprecipitation experiment, NRSF interacted with the full-length Sp3 factor, but not with Sp1 or two short Sp3 isoforms. The sequence specific and functional binding by Sp3 at this GC box was confirmed by in vitro gel-shift assays using either in vitro translated proteins or nuclear extract, and by in vivo chromatin immunoprecipitation assays. Transient transfection assays showed that Sp3-binding site of the MOR gene is a functionally synergic repressor element with NRSE in NS20Y cells, but not in the NRSF negative PC12 cells. The results suggest that the synergic interaction between NRSF and Sp3 is required to negatively regulate MOR gene transcription and that transcription of MOR gene would be governed by the context of available transcription factors rather than by a master regulator

    The JCMT BISTRO Survey: A Spiral Magnetic Field in a Hub-filament Structure, Monoceros R2

    Get PDF
    We present and analyze observations of polarized dust emission at 850 ÎŒm toward the central 1 7 1 pc hub-filament structure of Monoceros R2 (Mon R2). The data are obtained with SCUBA-2/POL-2 on the James Clerk Maxwell Telescope (JCMT) as part of the B-fields in Star-forming Region Observations survey. The orientations of the magnetic field follow the spiral structure of Mon R2, which are well described by an axisymmetric magnetic field model. We estimate the turbulent component of the magnetic field using the angle difference between our observations and the best-fit model of the underlying large-scale mean magnetic field. This estimate is used to calculate the magnetic field strength using the Davis–Chandrasekhar–Fermi method, for which we also obtain the distribution of volume density and velocity dispersion using a column density map derived from Herschel data and the C18O (J = 3 - 2) data taken with HARP on the JCMT, respectively. We make maps of magnetic field strengths and mass-to-flux ratios, finding that magnetic field strengths vary from 0.02 to 3.64 mG with a mean value of 1.0 \ub1 0.06 mG, and the mean critical mass-to-flux ratio is 0.47 \ub1 0.02. Additionally, the mean Alfv\ue9n Mach number is 0.35 \ub1 0.01. This suggests that, in Mon R2, the magnetic fields provide resistance against large-scale gravitational collapse, and the magnetic pressure exceeds the turbulent pressure. We also investigate the properties of each filament in Mon R2. Most of the filaments are aligned along the magnetic field direction and are magnetically subcritical

    The JCMT BISTRO Survey: Studying the Complex Magnetic Field of L43

    Get PDF
    We present observations of polarized dust emission at 850 ÎŒm from the L43 molecular cloud, which sits in the Ophiuchus cloud complex. The data were taken using SCUBA-2/POL-2 on the James Clerk Maxwell Telescope as a part of the BISTRO large program. L43 is a dense (NH 10 22 2 ~ –1023 cm−2) complex molecular cloud with a submillimeter-bright starless core and two protostellar sources. There appears to be an evolutionary gradient along the isolated filament that L43 is embedded within, with the most evolved source closest to the Sco OB2 association. One of the protostars drives a CO outflow that has created a cavity to the southeast. We see a magnetic field that appears to be aligned with the cavity walls of the outflow, suggesting interaction with the outflow. We also find a magnetic field strength of up to ∌160 ± 30 ÎŒG in the main starless core and up to ∌90 ± 40 ÎŒG in the more diffuse, extended region. These field strengths give magnetically super- and subcritical values, respectively, and both are found to be roughly trans-AlfvĂ©nic. We also present a new method of data reduction for these denser but fainter objects like starless cores

    The Eruption of the Candidate Young Star ASASSN-15qi

    Get PDF
    Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star-disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. The ∌3.5\sim 3.5 mag brightening in the VV band was sudden, with an unresolved rise time of less than one day. The outburst decayed exponentially by 1 mag for 6 days and then gradually back to the pre-outburst level after 200 days. The outburst is dominated by emission from ∌10,000\sim10,000 K gas. An explosive release of energy accelerated matter from the star in all directions, seen in a spectacular cool, spherical wind with a maximum velocity of 1000 km/s. The wind and hot gas both disappeared as the outburst faded and the source the source returned to its quiescent F-star spectrum. Nebulosity near the star brightened with a delay of 10-20 days. Fluorescent excitation of H2_2 is detected in emission from vibrational levels as high as v=11v=11, also with a possible time delay in flux increase. The mid-infrared spectral energy distribution does not indicate the presence of warm dust emission, although the optical photospheric absorption and CO overtone emission could be related to a gaseous disk. Archival photometry reveals a prior outburst in 1976. Although we speculate about possible causes for this outburst, none of the explanations are compelling

    The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data

    Get PDF
    This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys
    • 

    corecore