613 research outputs found

    Aptamers for respiratory syncytial virus detection.

    Get PDF
    The identification of the infectious agents is pivotal for appropriate care of patients with viral diseases. Current viral diagnostics rely on selective detection of viral nucleic acid or protein components. In general, detection of proteins rather than nucleic acids is technically more suitable for rapid tests. However, protein-based virus identification methods depend on antibodies limiting the practical applicability of these approaches. Aptamers rival antibodies in target selectivity and binding affinity, and excel in terms of robustness and cost of synthesis. Although aptamers have been generated for virus identification in laboratory settings, their introduction into routine virus diagnostics has not been realized, yet. Here, we demonstrate that the rationally designed SELEX protocol can be applied on whole virus to select aptamers, which can potentially be applied for viral diagnostics. This approach does not require purified virus protein or complicated virus purification. The presented data also illustrate that corroborating the functionality of aptamers with various approaches is essential to pinpoint the most appropriate aptamer amongst the panel of candidates obtained by the selection. Our protocol yielded aptamers capable of detecting respiratory syncytial virus (RSV), an important pathogen causing severe disease especially in young infants, at clinically relevant concentrations in complex matrices

    Roles of genetic polymorphisms in the folate pathway in childhood acute lymphoblastic leukemia evaluated by bayesian relevance and effect size analysis.

    Get PDF
    In this study we investigated whether polymorphisms in the folate pathway influenced the risk of childhood acute lymphoblastic leukemia (ALL) or the survival rate of the patients. For this we selected and genotyped 67 SNPs in 15 genes in the folate pathway in 543 children with ALL and 529 controls. The results were evaluated by gender adjusted logistic regression and by the Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) methods. Bayesian structure based odds ratios for the relevant variables and interactions were also calculated. Altogether 9 SNPs in 8 genes were associated with altered susceptibility to ALL. After correction for multiple testing, two associations remained significant. The genotype distribution of the MTHFD1 rs1076991 differed significantly between the ALL and control population. Analyzing the subtypes of the disease the GG genotype increased only the risk of B-cell ALL (p = 3.52x10(-4); OR = 2.00). The GG genotype of the rs3776455 SNP in the MTRR gene was associated with a significantly reduced risk to ALL (p = 1.21x10(-3); OR = 0.55), which resulted mainly from the reduced risk to B-cell and hyperdiploid-ALL. The TC genotype of the rs9909104 SNP in the SHMT1 gene was associated with a lower survival rate comparing it to the TT genotype (80.2% vs. 88.8%; p = 0.01). The BN-BMLA confirmed the main findings of the frequentist-based analysis and showed structural interactional maps and the probabilities of the different structural association types of the relevant SNPs especially in the hyperdiploid-ALL, involving additional SNPs in genes like TYMS, DHFR and GGH. We also investigated the statistical interactions and redundancies using structural model properties. These results gave further evidence that polymorphisms in the folate pathway could influence the ALL risk and the effectiveness of the therapy. It was also shown that in gene association studies the BN-BMLA could be a useful supplementary to the traditional frequentist-based statistical method

    Apolipoprotein E genotypes and longevity across dementia disorders

    Get PDF
    INTRODUCTION: The ε4 allele of the apolipoprotein E (APOE) gene is a prominent risk factor for Alzheimer's disease (AD), but its implication in other dementias is less well studied. METHODS: We used a data set on 2858 subjects (1098 AD, 260 vascular dementia [VaD], 145 mixed AD and VaD, 90 other dementia diagnoses, and 1265 controls) to examine the association of APOE polymorphisms with clinical dementia diagnoses, biomarker profiles, and longevity. RESULTS: The ε4 allele was associated with reduced longevity as ε4 versus ε3 homozygotes lived on average 2.6 years shorter (P = .006). In AD, ε4 carriers lived 1.0 years shorter than noncarriers (P = .028). The ε4 allele was more prevalent in AD, mixed AD and VaD, and VaD patients compared to controls, but not in other dementia disorders. DISCUSSION: The APOE ε4 allele is influential in AD but might also be of importance in VaD and in mixed AD and VaD, diseases in which concomitant AD pathology is common

    Preclinical effects of APOE epsilon 4 on cerebrospinal fluid A beta 42 concentrations

    Get PDF
    Background: From earlier studies it is known that the APOE ε2/ε3/ε4 polymorphism modulates the concentrations of cerebrospinal fluid (CSF) beta-amyloid1–42 (Aβ42) in patients with cognitive decline due to Alzheimer’s disease (AD), as well as in cognitively healthy controls. Here, in a large cohort consisting solely of cognitively healthy individuals, we aimed to evaluate how the effect of APOE on CSF Aβ42 varies by age, to understand the association between APOE and the onset of preclinical AD. // Methods: APOE genotype and CSF Aβ42 concentration were determined in a cohort comprising 716 cognitively healthy individuals aged 17–99 from nine different clinical research centers. // Results: CSF concentrations of Aβ42 were lower in APOE ε4 carriers than in noncarriers in a gene dose-dependent manner. The effect of APOE ε4 on CSF Aβ42 was age dependent. The age at which CSF Aβ42 concentrations started to decrease was estimated at 50 years in APOE ε4-negative individuals and 43 years in heterozygous APOE ε4 carriers. Homozygous APOE ε4 carriers showed a steady decline in CSF Aβ42 concentrations with increasing age throughout the examined age span. // Conclusions: People possessing the APOE ε4 allele start to show a decrease in CSF Aβ42 concentration almost a decade before APOE ε4 noncarriers already in early middle age. Homozygous APOE ε4 carriers might deposit Aβ42 throughout the examined age span. These results suggest that there is an APOE ε4-dependent period of early alterations in amyloid homeostasis, when amyloid slowly accumulates, that several years later, together with other downstream pathological events such as tau pathology, translates into cognitive decline

    Rogue Logics: Organization in the Grey Zone

    Get PDF
    This paper explores the concept of the ‘rogue’ through an examination of how the figure appears in business ethics and as the rogue trader. Reading the rogue trader through institutional logics and Jacques Derrida’s book Rogues, we suggest that the rogue is not on the dark side of organization so much as in an indeterminate grey zone, where the boundary between acceptable behaviour and misconduct is unclear. We further argue that this boundary is necessarily unclear as it is in the nature of organization, at least within capitalist trading systems, to push the boundaries of what is possible and acceptable. The rogue thus helps produce the boundaries of ethically acceptable organizational behaviour in the very act of transgressing them. The location-bound specificity of the rogue, as well as the symbolic process of naming an individual or a state a rogue finds a relevant correlate in the villain, as Derrida suggests. But what we call ‘rogue organization’ may be constitutive of organization per se. As such, there is a potential roguishness in organization that should be addressed when considering the dark side of ethics in organization studies

    Multivariate Analysis of Dopaminergic Gene Variants as Risk Factors of Heroin Dependence

    Get PDF
    BACKGROUND: Heroin dependence is a debilitating psychiatric disorder with complex inheritance. Since the dopaminergic system has a key role in rewarding mechanism of the brain, which is directly or indirectly targeted by most drugs of abuse, we focus on the effects and interactions among dopaminergic gene variants. OBJECTIVE: To study the potential association between allelic variants of dopamine D2 receptor (DRD2), ANKK1 (ankyrin repeat and kinase domain containing 1), dopamine D4 receptor (DRD4), catechol-O-methyl transferase (COMT) and dopamine transporter (SLC6A3) genes and heroin dependence in Hungarian patients. METHODS: 303 heroin dependent subjects and 555 healthy controls were genotyped for 7 single nucleotide polymorphisms (SNPs) rs4680 of the COMT gene; rs1079597 and rs1800498 of the DRD2 gene; rs1800497 of the ANKK1 gene; rs1800955, rs936462 and rs747302 of the DRD4 gene. Four variable number of tandem repeats (VNTRs) were also genotyped: 120 bp duplication and 48 bp VNTR in exon 3 of DRD4 and 40 bp VNTR and intron 8 VNTR of SLC6A3. We also perform a multivariate analysis of associations using Bayesian networks in Bayesian multilevel analysis (BN-BMLA). FINDINGS AND CONCLUSIONS: In single marker analysis the TaqIA (rs1800497) and TaqIB (rs1079597) variants were associated with heroin dependence. Moreover, -521 C/T SNP (rs1800955) of the DRD4 gene showed nominal association with a possible protective effect of the C allele. After applying the Bonferroni correction TaqIB was still significant suggesting that the minor (A) allele of the TaqIB SNP is a risk component in the genetic background of heroin dependence. The findings of the additional multiple marker analysis are consistent with the results of the single marker analysis, but this method was able to reveal an indirect effect of a promoter polymorphism (rs936462) of the DRD4 gene and this effect is mediated through the -521 C/T (rs1800955) polymorphism in the promoter

    Particle identification studies with a full-size 4-GEM prototype for the ALICE TPC upgrade

    Full text link
    A large Time Projection Chamber is the main device for tracking and charged-particle identification in the ALICE experiment at the CERN LHC. After the second long shutdown in 2019/20, the LHC will deliver Pb beams colliding at an interaction rate of about 50 kHz, which is about a factor of 50 above the present readout rate of the TPC. This will result in a significant improvement on the sensitivity to rare probes that are considered key observables to characterize the QCD matter created in such collisions. In order to make full use of this luminosity, the currently used gated Multi-Wire Proportional Chambers will be replaced. The upgrade relies on continuously operated readout detectors employing Gas Electron Multiplier technology to retain the performance in terms of particle identification via the measurement of the specific energy loss by ionization dEE/dxx. A full-size readout chamber prototype was assembled in 2014 featuring a stack of four GEM foils as an amplification stage. The performance of the prototype was evaluated in a test beam campaign at the CERN PS. The dEE/dxx resolution complies with both the performance of the currently operated MWPC-based readout chambers and the challenging requirements of the ALICE TPC upgrade program. Detailed simulations of the readout system are able to reproduce the data.Comment: Submitted to NIM

    The upgrade of the ALICE TPC with GEMs and continuous readout

    Get PDF
    The upgrade of the ALICE TPC will allow the experiment to cope with the high interaction rates foreseen for the forthcoming Run 3 and Run 4 at the CERN LHC. In this article, we describe the design of new readout chambers and front-end electronics, which are driven by the goals of the experiment. Gas Electron Multiplier (GEM) detectors arranged in stacks containing four GEMs each, and continuous readout electronics based on the SAMPA chip, an ALICE development, are replacing the previous elements. The construction of these new elements, together with their associated quality control procedures, is explained in detail. Finally, the readout chamber and front-end electronics cards replacement, together with the commissioning of the detector prior to installation in the experimental cavern, are presented. After a nine-year period of R&D, construction, and assembly, the upgrade of the TPC was completed in 2020.publishedVersio

    Long- and short-range correlations and their event-scale dependence in high-multiplicity pp collisions at 1as = 13 TeV

    Get PDF
    Two-particle angular correlations are measured in high-multiplicity proton-proton collisions at s = 13 TeV by the ALICE Collaboration. The yields of particle pairs at short-( 06\u3b7 3c 0) and long-range (1.6 < | 06\u3b7| < 1.8) in pseudorapidity are extracted on the near-side ( 06\u3c6 3c 0). They are reported as a function of transverse momentum (pT) in the range 1 < pT< 4 GeV/c. Furthermore, the event-scale dependence is studied for the first time by requiring the presence of high-pT leading particles or jets for varying pT thresholds. The results demonstrate that the long-range \u201cridge\u201d yield, possibly related to the collective behavior of the system, is present in events with high-pT processes as well. The magnitudes of the short- and long-range yields are found to grow with the event scale. The results are compared to EPOS LHC and PYTHIA 8 calculations, with and without string-shoving interactions. It is found that while both models describe the qualitative trends in the data, calculations from EPOS LHC show a better quantitative agreement for the pT dependency, while overestimating the event-scale dependency. [Figure not available: see fulltext.
    corecore