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Abstract

Background: From earlier studies it is known that the APOE ε2/ε3/ε4 polymorphism modulates the concentrations
of cerebrospinal fluid (CSF) beta-amyloid1–42 (Aβ42) in patients with cognitive decline due to Alzheimer’s disease
(AD), as well as in cognitively healthy controls. Here, in a large cohort consisting solely of cognitively healthy
individuals, we aimed to evaluate how the effect of APOE on CSF Aβ42 varies by age, to understand the association
between APOE and the onset of preclinical AD.

Methods: APOE genotype and CSF Aβ42 concentration were determined in a cohort comprising 716 cognitively
healthy individuals aged 17–99 from nine different clinical research centers.

Results: CSF concentrations of Aβ42 were lower in APOE ε4 carriers than in noncarriers in a gene dose-dependent
manner. The effect of APOE ε4 on CSF Aβ42 was age dependent. The age at which CSF Aβ42 concentrations
started to decrease was estimated at 50 years in APOE ε4-negative individuals and 43 years in heterozygous APOE
ε4 carriers. Homozygous APOE ε4 carriers showed a steady decline in CSF Aβ42 concentrations with increasing age
throughout the examined age span.

Conclusions: People possessing the APOE ε4 allele start to show a decrease in CSF Aβ42 concentration almost a
decade before APOE ε4 noncarriers already in early middle age. Homozygous APOE ε4 carriers might deposit Aβ42
throughout the examined age span. These results suggest that there is an APOE ε4-dependent period of early
alterations in amyloid homeostasis, when amyloid slowly accumulates, that several years later, together with other
downstream pathological events such as tau pathology, translates into cognitive decline.
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Background
Alzheimer’s disease (AD) is a neurodegenerative disease
characterized by the accumulation of extracellular beta-
amyloid (Aβ) plaques and intracellular tau tangles [1]. AD
pathology is multifactorial with both genetic and environ-
mental risk factors, with the most prominent susceptibility
gene being apolipoprotein E (APOE) [2]. The APOE gene
is polymorphic, with three different alleles, of which the
ε4 allele is associated with an increased risk, as well as a

lower age at onset, of AD. Heterozygous APOE ε4 carriers
have an approximately 3-fold increase of risk compared
with individuals lacking the ε4 allele, whereas the increase
of risk is up to 12-fold in homozygous APOE ε4 carriers
[3]. The underlying pathophysiological mechanisms for
this strong genetic association are still unknown, but may
involve direct or indirect effects on Aβ aggregation or
clearance [4, 5].
Measurement of the 42 amino acid isoform of Aβ (Aβ42)

in the cerebrospinal fluid (CSF) is used alongside CSF total
tau (T-tau) and CSF phosphorylated tau (P-tau) as a diag-
nostic tool for AD [6]. Decreased concentrations of CSF
Aβ42 are indicative of cerebral amyloid pathology during
the entire course of the disease, from preclinical asymptom-
atic disease to mild cognitive impairment (MCI) and
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dementia, and may even indicate disturbed amyloid metab-
olism before amyloid deposition may be visualized by amyl-
oid PET imaging [7–9]. An association between the APOE
genotype and CSF concentrations of Aβ42 has been de-
scribed previously among patients with AD and MCI, as
well as in healthy controls, with the APOE ε4 allele being
associated with lower CSF Aβ42 concentrations in a gene
dose-dependent manner [10–15]. However, because most
studies have only analyzed older people, it is not clear
whether this effect is present in all age groups irrespective
of preexisting amyloid pathology, especially since an earlier
study showed the effect to be absent in a small cohort of
younger cognitively healthy individuals [14].
Consequently, the question that arises is at what age the

potential effects of APOE ε4 on CSF Aβ42 can be de-
tected. To tackle this question, we analyzed CSF Aβ42 as
well as the APOE ε4 genotype in a large cohort consisting
of 716 cognitively healthy individuals from 17 to 99 years
of age. Specifically, we tested how CSF Aβ42 concentra-
tions differ by age in the different APOE ε4 carrier groups.

Methods
Cohorts
The total cohort consisted of 716 cognitively healthy in-
dividuals from nine different centers in Sweden, Finland,
Germany, and Italy with age ranging from 17 to 99 years.
All centers were specialized memory clinics, except one,
which is a psychiatry clinic specialized in affective disor-
ders. All subjects underwent neurological examination
as well as cognitive testing to exclude cognitive impair-
ment. One of the subcohorts contained 138 patients
with bipolar disorder, whereas the rest of the partici-
pants (n = 578) were healthy volunteers. Most study par-
ticipants (except the bipolar disorder patients, who were
recruited among patients at the specialized affective dis-
orders clinic) were recruited by advertisement or among
relatives or friends of patients who were evaluated on
suspicion of cognitive dysfunction.

Lumbar puncture
CSF samples were obtained by lumbar puncture in the
L3/4 or L4/5 interspace, collected in polypropylene tubes,
centrifuged, and stored frozen at –80 °C until analysis ac-
cording to standard operating procedures [6]. The time
frame during which samples were collected in each center
in relation to the time of sample analysis was less than
5 years in all cohorts. Long-term stability of CSF Aβ42 at
–80 °C has been evaluated in several studies [16–18], all
of which show that CSF Aβ42 is stable at –80 °C. The ma-
jority of the biomarker analyses were performed at the
Clinical Neurochemistry Laboratory at the Sahlgrenska
University Hospital, Gothenburg, Sweden, but samples
from Kuopio, Finland and Munich, Germany as well as
from Italy were analyzed in local laboratories.

CSF analyses
CSF Aβ42 concentrations were measured using a sandwich
enzyme-linked immunosorbent assay (INNOTEST β-
amyloid[1–42]; Fujirebio, Ghent, Belgium) designed to
detect the 1st and 42nd amino acids in the Aβ protein as
described previously [19]. A subset of the samples was ana-
lyzed using a multiplex semiautomated assay platform
(xMAP Luminex AlzBio3; Fujirebio) as described previously
[20]. All analyses were performed by experienced laboratory
technicians who were blinded to all clinical information.
To adjust for variation in biomarker concentrations be-

tween the different laboratories, data were normalized by
defining the largest center cohort as the reference group
and then calculating factors between the APOE ε4-negative
individuals from each participating center and the APOE
ε4-negative individuals in the reference group. These fac-
tors were then applied to all data, hence relating biomarker
concentrations in all of the different center cohorts to those
in the reference group. There were no significant correla-
tions between age and CSF Aβ42 concentrations in all but
one of the subcohorts (in which the effect was minor, r2 =–
0.036, P = 0.037), which points toward a lack of a primary
relation between these two parameters. Note that since the
center cohort that was defined as the reference group used
the xMAP Luminex AlzBio3 assay, the normalized concen-
trations of Aβ42 in this material were lower than the
corresponding concentrations when using the INNOTEST
β-amyloid[1–42] assay.

APOE alleles
Genotyping for APOE (gene map locus 19q13.2) was
performed using allelic discrimination technology (Taq-
Man; Applied Biosystems) or equivalent techniques. Ge-
notypes were obtained for the two single nucleotide
polymorphisms that define the ε2, ε3, and ε4 alleles.

Statistical analysis
Comparisons of biomarker concentrations between
APOE ε4 carrier groups were performed by one-way
analysis of variance (ANOVA) for several independent
samples. Comparisons of genotype frequencies between
patients with bipolar disorder and healthy volunteers
were performed using Pearson’s chi-squared test. Statis-
tical significance was defined at P < 0.05 and all statis-
tical calculations were performed using SPSS version 19
(SPSS Inc., Chicago, IL, USA).
The trajectory of CSF Aβ42 concentrations with re-

spect to age in different APOE ε4 carrier groups was
modeled using restricted cubic splines and ordinary least
squares regression. The Akaike Information Criterion se-
lected the optimal model to be estimated using three
spline knots. Regression models included gender and the
interaction between the two-parameter spline represen-
tation of age and APOE ε4 group and the main effects
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for age and APOE ε4 group. Age at the initial decline of
CSF Aβ42 concentrations was taken to be the maximum
Aβ42 concentration prior to a monotone descent with
increasing age. Confidence intervals for age at initial de-
cline were estimated using the margins (2.5 and 97.5
percentiles) of 500 bootstrap samples.

Results
Demographic, genetic, and biochemical data
The majority of individuals in the total cohort (70.7%)
lacked the APOE ε4 allele, with 26.5% being heterozygous
and 2.8% being homozygous APOE ε4 carriers (Table 1).
The subcohort consisting of patients with bipolar disorder
had similar APOE ε4 genotype frequency (P = 0.633) as well
as similar concentrations of CSF Aβ42 (P = 0.302) com-
pared to the healthy volunteers and was therefore pooled
with the rest of the total cohort (data not shown). There
were neither any gender differences with regards to APOE
ε4 genotype frequency (P = 0.586) or CSF Aβ42 concentra-
tions (P = 0.534). Table 2 presents detailed demographic
and biochemical data for all of the subcohorts included in
the analysis.

CSF Aβ42 concentrations in relation to APOE genotype
In the total cohort, CSF Aβ42 concentrations were lower
in APOE ε4 carriers than in noncarriers in a gene dose-
dependent manner (P < 0.001, Table 1), which is in keep-
ing with earlier findings [14]. However, when dividing the
total cohort into tertiles according to age, the effect was
present in the middle and upper tertiles among individuals
aged 46 or older (P < 0.001, Table 1), whereas in the lower
tertile, containing individuals aged 45 or younger, the dif-
ference was nonsignificant (P = 0.203, Table 1).

CSF Aβ42 concentrations across different age groups
The estimated curves showed an initial upslope of CSF
Aβ42 concentrations in APOE ε4-negative individuals and
heterozygous APOE ε4 carriers followed by a steep des-
cent (Fig. 1). Aβ42 concentrations in homozygous APOE
ε4 carriers, however, descended from an early age lacking
the initial upslope. The age of initial descent, defined as
the age at which CSF Aβ42 reaches its maximum, was es-
timated at 50 (95% confidence interval (CI) 42–54) years
for APOE ε4-negative individuals and 43 (95% CI 17–48)
years for heterozygous APOE ε4 carriers. This number
could not be estimated in homozygous APOE ε4 carriers,
as they lacked the initial upslope.

Discussion
We conducted a large multicenter study to assess how ef-
fects of the APOE ε2/ε3/ε4 polymorphism on CSF Aβ42
concentrations vary by age in cognitively healthy individuals.
The main findings were that: the APOE ε4 allele was associ-
ated with lower CSF Aβ42 concentrations overall in cogni-
tively healthy people; the effects of APOE ε4 were present in
older people but not in young people; and CSF Aβ42 started
to decline at age 50 in people without the APOE ε4 allele, at
age 43 in people carrying one APOE ε4 allele, and even earl-
ier in people carrying two APOE ε4 alleles. Taken together,
these findings show that APOE ε4 strongly modulates the
effect of age on CSF Aβ42 in cognitively healthy people, and
points to important age-dependent effects of APOE ε4 on
the development of preclinical AD.
Comparisons of CSF Aβ42 and amyloid PET imaging in

cognitively healthy people suggest that the first decline in
CSF Aβ42 does not always translate to widespread cerebral
amyloid deposition [7, 8, 21]. The age at which CSF Aβ42

Table 1 Demographic, genetic, and biochemical data in the total cohort as well as divided into three age tertiles

Total cohort (n = 716) ≤45 years (n = 237) 46–64 years (n = 242) ≥65 years (n = 237)

Demographic

Age (years), mean (range) 53.3 (17–99) 29.9 (17–45) 57.3 (46–64) 72.6 (65–99)

Male, n (%) 305 (42.6) 114 (48.1) 104 (43.0) 87 (36.7)

Female, n (%) 411 (57.4) 123 (51.9) 138 (57.0) 150 (63.3)

Genetic

APOE ε4–/–, n (%) 506 (70.7) 162 (68.4) 172 (71.1) 172 (72.6)

APOE ε4+/–, n (%) 190 (26.5) 69 (29.1) 64 (26.4) 57 (24.1)

APOE ε4+/+, n (%) 20 (2.8) 6 (2.5) 6 (2.5) 8 (3.4)

Biochemical: CSF Aβ42 (ng/L), mean (SD)

All genotypes 252.1 (71.0) 251.9 (67.8) 264.9 (67.7) 239.2 (75.2)

APOE ε4–/– 261.2 (70.9) 257.2 (69.5) 274.5 (68.1) 251.8 (73.4)

APOE ε4+/– 234.8 (65.4) 241.4 (64.0) 248.1 (58.3) 211.9 (69.7)

APOE ε4+/+ 185.5 (59.0) 231.3 (51.8) 167.8 (39.1) 164.4 (62.1)

P value* <0.001 0.203 <0.001 <0.001

*P values indicate comparisons of CSF Aβ42 concentrations between the APOE ε4 carrier groups (for the total cohort as well as for each of the tertiles)
APOE apolipoprotein E, Aβ42 beta-amyloid1–42, CSF cerebrospinal fluid, SD standard deviation
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concentrations start to decrease may therefore be the start-
ing point for preclinical pathological disturbances in amyl-
oid homeostasis, which ultimately results in amyloid
accumulation that later becomes detectable on amyloid
PET imaging. The data from this study suggest that the dis-
turbed amyloid homeostasis occurs on average from age 50
in APOE ε4-negative individuals, and almost a decade earl-
ier in APOE ε4 heterozygous people. In APOE ε4 homozy-
gous people we estimated a descent in CSF Aβ42 already
from age 17, but the sparsity of data among young homozy-
gous APOE ε4 carriers makes this estimate uncertain, and
we can only conclude that the decline in CSF Aβ42 starts
considerably earlier in homozygous APOE ε4 carriers com-
pared with heterozygous APOE ε4 carriers or noncarriers.
Importantly, previous studies provide convergent evidence
that emerging amyloid pathology, defined as decreased CSF
Aβ42 concentrations, or CSF Aβ42 concentrations slightly
above conventional thresholds for amyloid positivity, may
have deleterious effects on brain structure, brain function,
and cognition [22–25]. This highlights the importance of
detecting the earliest effects of APOE ε4 on CSF Aβ42 in
order to provide very early diagnostics and potentially initi-
ate prevention of AD.
The fact that APOE ε4 affected CSF Aβ42 concen-

trations already from 43 years of age is interesting
since a previous study found that APOE ε4 was asso-
ciated with cognitive decline only after 50 years of
age [26]. We therefore suggest that there is an
intermediate period of early alterations in amyloid
homeostasis before cognitive decline becomes detect-
able [23], when amyloid accumulation slowly builds
up together with downstream pathological events

(including spread of tau tangles), which ultimately
translate to cognitive decline several years later.
This study has several limitations. First, we used cross-

sectional data from several cohorts and several assays to
measure CSF Aβ42. Although we employed normalization
measures to bridge all results, the variability in cohorts and
assays increases the variance of our models and estimates.
Future studies are needed to verify these results in a mono-
center setting, obviating the need for data normalization
across cohorts. Second, the low number of APOE ε4 homo-
zygous people, along with the sparsity of data in the age
span between 85 and 100 years, limits our ability to model
effects of APOE ε4 homozygosity and effects in the final
part of the natural life span. Also, the lack of APOE ε4
homozygous people between age 35 and 50 makes it im-
possible to define whether there is a plateau in Aβ42 con-
centrations before decline or whether the concentrations
drop directly from age 17 in homozygous APOE ε4 carriers.

Conclusions
To sum up, the results of this study suggest that the
process of preclinical Aβ pathology might start in early
middle age in APOE ε4 carriers. Hence, we hypothesize
that the APOE ε4 allele affects CSF Aβ42 concentrations
by speeding up the process of preclinical Aβ accumula-
tion and deposition in the brain. Studies addressing the
molecular mechanisms behind the association between
ApoE and cerebral Aβ build-up are needed to verify this.
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